Let $mathcal{I}(R)$ be the set of all ideals of a ring $R$, $delta$ be an expansion function of $mathcal{I}(R)$. In this paper, the $delta$-$J$-ideal of a commutative ring is defined, that is, if $a, bin R$ and $abin Iin mathcal{I}(R)$, then $ain J(R)$ (the Jacobson radical of $R$) or $bin delta(I)$. Moreover, some properties of $delta$-$J$-ideals are discussed,such as localizations, homomorphic images, idealization and so on.