No Arabic abstract
Chemical abundances in the Leo ring, the largest HI cloud in the local Universe, have recently been determined to be close or above solar, incompatible with a previously claimed primordial origin of the ring. The gas, pre-enriched in a galactic disk and tidally stripped, did not manage to form stars very efficiently in intergalactic space. We map nebular lines in 3 dense HI clumps of the Leo ring and complement these data with archival stellar continuum observations to investigate the slow building up of a sparse population of stars in localized areas of the ring. Individual young stars as massive as O7-types are powering some HII regions. The average star formation rate density is of order of 10^{-5} Msun/yr/kpc^2 and proceeds with local bursts a few hundred parsecs in size, where loose stellar associations of 500-1000 Msun occasionally host massive outliers. The far ultraviolet-to-Halpha emission ratio in nebular regions implies recent stellar bursts, from 2 to 7 Myr ago. The relation between the local HI gas density and the star formation rate in the ring is similar to what is found in dwarfs and outer disks with gas depletion times as long as 100~Gyrs. We find a candidate planetary nebula in a compact and faint Halpha region with [OIII]/Halpha line enhancement, consistent with the estimated mean stellar surface brightness of the ring. The presence of 1 kpc partial ring emitting weak Halpha lines around the brightest and youngest HII region suggests that local shocks might be the triggers of new star forming events.
The origin and fate of the most extended extragalactic neutral cloud known in the local Universe, the Leo ring, is still debated 38 years after its discovery. Its existence is alternatively attributed to leftover primordial gas with some low level of metal pollution versus enriched gas stripped during a galaxy-galaxy encounter. Taking advantage of MUSE (Multi Unit Spectroscopic Explorer) operating at the VLT, we performed optical integral field spectroscopy of 3 HI clumps in the Leo ring where ultraviolet continuum emission has been found. We detected, for the first time, ionized hydrogen in the ring and identify 4 nebular regions powered by massive stars. These nebulae show several metal lines ([OIII],[NII],[SII]) which allowed reliable measures of metallicities, found to be close to or above the solar value. Given the faintness of the diffuse stellar counterparts, less than 3 percent of the observed heavy elements could have been produced locally in the main body of the ring and not much more than 15 percent in the HI clump towards M96. This inference, and the chemical homogeneity among the regions, convincingly demonstrates that the gas in the ring is not primordial, but has been pre-enriched in a galaxy disk, then later removed and shaped by tidal forces and it is forming a sparse population of stars.
Rich in HII regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star forming complex W33 is located at l=~12.8deg and at a distance of 2.4 kpc, has a size of ~10 pc and a total mass of (~0.8 - ~8.0) X 10^5 Msun. The integrated radio and IR luminosity of W33 - when combined with the direct detection of methanol masers, the protostellar object W33A, and protocluster embedded within the radio source W33 main - mark the region out as a site of vigorous ongoing star formation. In order to assess the long term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time fourteen early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the last ~2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the north-west edge of W33 does not appear to be physically associated with W33.
In the local (redshift z~0) Universe, collisional ring galaxies make up only ~0.01% of galaxies and are formed by head-on galactic collisions that trigger radially propagating density waves. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe. However, not much is known about distant (z>0.1) collisional rings. Here we present a detailed study of a ring galaxy at a look-back time of 10.8 Gyr (z=2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5-2.2 times larger and is forming stars 50 times faster. The large, diffuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved, the implied large bar in a giant disk would be inconsistent with the current understanding of the earliest formation of barred spirals. Contrary to previous predictions, this work suggests that massive collisional rings were as rare 11 Gyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.
Young massive stars and stellar clusters continuously form in the Galactic disk, generating new HII regions within their natal giant molecular clouds and subsequently enriching the interstellar medium via their winds and supernovae. Massive stars are among the brightest infrared stars in such regions; their identification permits the characterization of the star formation history of the associated cloud as well as constraining the location of stellar aggregates and hence their occurrence as a function of global environment. We present a stellar spectroscopic survey in the direction of the giant molecular cloud G23.3-0.3. This complex is located at a distance of ~ 4-5 kpc, and consists of several HII regions and supernova remnants. We discovered 11 OfK+ stars, one candidate Luminous Blue Variable, several OB stars, and candidate red supergiants. Stars with K-band extinction from ~1.3 - 1.9 mag appear to be associated with the GMC G23.3-0.3; O and B-types satisfying this criterion have spectro-photometric distances consistent with that of the giant molecular cloud. Combining near-IR spectroscopic and photometric data allowed us to characterize the multiple sites of star formation within it. The O-type stars have masses from 25 - 45 Msun, and ages of 5-8 Myr. Two new red supergiants were detected with interstellar extinction typical of the cloud; along with the two RSGs within the cluster GLIMPSE9, they trace an older burst with an age of 20--30 Myr. Massive stars were also detected in the core of three supernova remnants - W41, G22.7-0.2, and G22.7583-0.4917. A large population of massive stars appears associated with the GMC G23.3-0.3, with the properties inferred for them indicative of an extended history of stars formation.
Nearly 50 years ago, in the proceedings of the first IAU symposium on planetary nebulae, Lawrence H. Aller and Stanley J. Czyzak said that the problem of determination of the chemical compositions of planetary and other gaseous nebulae constitutes one of the most exasperating problems in astrophysics. Although the situation has greatly improved over the years, many important problems are still open and new questions have arrived to the field, which still is an active field of study. Here I will review some of the main aspects related to the determination of gaseous abundances in PNe and some relevant results derived in the last five years, since the last IAU symposium on PNe.