Do you want to publish a course? Click here

Breaking the mass-sheet degeneracy with gravitational wave interference in lensed events

61   0   0.0 ( 0 )
 Added by Paolo Cremonese
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The mass-sheet degeneracy is a well-known problem in gravitational lensing which limits our capability to infer astrophysical lens properties or cosmological parameters from observations. As the number of gravitational wave observations grows, detecting lensed events will become more likely, and to assess how the mass-sheet degeneracy may affect them is crucial. Here we study both analytically and numerically how the lensed waveforms are affected by the mass-sheet degeneracy computing the amplification factor from the diffraction integral. In particular, we differentiate between the geometrical optics, wave optics and interference regimes, focusing on ground-based gravitational waves detectors. In agreement with expectations of gravitational lensing of electromagnetic radiation, we confirm how, in the geometrical optics scenario, the mass-sheet degeneracy cannot be broken with only one lensed image. However, we find that in the interference regime, and in part in the wave-optics regime, the mass-sheet degeneracy can be broken with only one lensed waveform thanks to the characteristic interference patterns of the signal. Finally, we quantify, through template matching, how well the mass-sheet degeneracy can be broken. We find that, within present GW detector sensitivities and considering signals as strong as those which have been detected so far, the mass-sheet degeneracy can lead to a $1sigma$ uncertainty on the lens mass of $sim 12%$. With these values the MSD might still be a problematic issue. But in case of signals with higher signal-to-noise ratio, the uncertainty can drop to $sim 2%$, which is less than the current indeterminacy achieved by dynamical mass measurements.



rate research

Read More

The degeneracy between the disk and the dark matter contribution to galaxy rotation curves remains an important uncertainty in our understanding of disk galaxies. Here we discuss a new method for breaking this degeneracy using gravitational lensing by spiral galaxies, and apply this method to the spiral lens B1600+434 as an example. The combined image and lens photometry constraints allow models for B1600+434 with either a nearly singular dark matter halo, or a halo with a sizable core. A maximum disk model is ruled out with high confidence. Further information, such as the circular velocity of this galaxy, will help break the degeneracies. Future studies of spiral galaxy lenses will be able to determine the relative contribution of disk, bulge, and halo to the mass in the inner parts of galaxies.
We present a numerical analysis supporting the evidence that the redshift evolution of the drifting coefficient of the field cluster mass function is capable of breaking several cosmic degeneracies. This evidence is based on the data from the CoDECS and DUSTGRAIN-pathfinder simulations performed separately for various non-standard cosmologies including coupled dark energy, $f(R)$ gravity and combinations of $f(R)$ gravity with massive neutrinos as well as for the standard $Lambda$CDM cosmology. We first numerically determine the field cluster mass functions at various redshifts in the range of $0le zle 1$ for each cosmology. Then, we compare the analytic formula developed in previous works with the numerically obtained field cluster mass functions by adjusting its drifting coefficient, $beta$, at each redshift. It is found that the analytic formula with the best-fit coefficient provides a good match to the numerical results at all redshifts for all of the cosmologies. The empirically determined redshift evolution of the drifting coefficient, $beta(z)$, turns out to significantly differ among different cosmologies. It is also shown that even without using any prior information on the background cosmology the drifting coefficient, $beta(z)$, can discriminate with high statistical significance the degenerate non-standard cosmologies not only from the $Lambda$CDM but also from one another. It is concluded that the evolution of the departure from the Einstein-de Sitter state and spherically symmetric collapse processes quantified by $beta(z)$ is a powerful probe of gravity and dark sector physics.
Future generation of gravitational wave detectors will have the sensitivity to detect gravitational wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the observed event rate is greater than one event per year at redshifts z > 40, then the probability distribution of primordial density fluctuations must be significantly non-Gaussian or the events originate from primordial black holes. The nature of the excess events can be determined from the redshift distribution of the merger rate.
The Laser Interferometer Space Antenna (LISA) will open the mHz frequency window of the gravitational wave (GW) landscape. Among all the new GW sources expected to emit in this frequency band, extreme mass-ratio inspirals (EMRIs) constitute a unique laboratory for astrophysics and fundamental physics. Here we show that EMRIs can also be used to extract relevant cosmological information, complementary to both electromagnetic (EM) and other GW observations. By using the loudest EMRIs (SNR$>$100) detected by LISA as dark standard sirens, statistically matching their sky localisation region with mock galaxy catalogs, we find that constraints on $H_0$ can reach $sim$1.1% ($sim$3.6%) accuracy, at the 90% credible level, in our best (worst) case scenario. By considering a dynamical dark energy (DE) cosmological model, with $Lambda$CDM parameters fixed by other observations, we further show that in our best (worst) case scenario $sim$5.9% ($sim$12.3%) relative uncertainties at the 90% credible level can be obtained on $w_0$, the DE equation of state parameter. Besides being relevant in their own right, EMRI measurements will be affected by different systematics compared to both EM and ground-based GW observations. Cross validation with complementary cosmological measurements will therefore be of paramount importance, especially if convincing evidence of physics beyond $Lambda$CDM emerges from future observations.
122 - Danny Laghi 2021
We show that the loudest extreme mass-ratio inspirals (EMRIs) detected by the future space-based gravitational wave detector LISA can be used as dark standard sirens, statistically matching their sky localisation region with mock galaxy catalogs. In these Proceedings we focus on a realistic EMRI population scenario and report accuracy predictions for the measure of cosmological parameters, anticipating the potential of EMRIs to simultaneously constrain the Hubble constant, the dark matter, and the dark energy density parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا