No Arabic abstract
Here we investigate how local properties of particles in a thermal bath influence the thermodynamics of the bath. We utilize nanothermodynamics, based on two postulates: that small systems can be treated self-consistently by coupling to an ensemble of similarly small systems, and that a large ensemble of small systems forms its own thermodynamic bath. We adapt these ideas to study how a large system may subdivide into an ensemble of smaller subsystems, causing internal heterogeneity across multiple size scales. For the semi-classical ideal gas, maximum entropy favors subdividing a large system of atoms into regions of variable size. The mechanism of region formation could come from quantum exchange that makes atoms in each region indistinguishable, while decoherence between regions allows atoms in separate regions to be distinguishable by location. Combining regions reduces the total entropy, as expected when distinguishable particles become indistinguishable, and as required by theorems for sub-additive entropy. Combining large volumes of small regions gives the entropy of mixing for a semi-classical ideal gas, resolving Gibbs paradox without invoking quantum symmetry for distant atoms. Other models we study are based on Ising-like spins in 1-D. We find similarity in the properties of a two-state model in the nanocanonical ensemble and a three-state model in the canonical ensemble. Thus, emergent phenomena may alter the thermal behavior of microscopic models, and the correct ensemble is necessary for fully-accurate predictions. We add a nonlinear correction to Boltzmanns factor in simulations of the Ising-like spins to imitate the dynamics of spin exchange on intermediate lengths, yielding the statistics of indistinguishable states. These simulations exhibit 1/f-like noise at low frequencies (f), and white noise at higher f, similar to the thermal fluctuations found in many materials.
Thermodynamics is usually developed starting from entropy and the maximum entropy principle. We investigate here to what extent one can replace entropy with relative entropy which has several advantages, for example in the context of local quantum field theory. We find that the principle of maximum entropy can be replaced by a principle of minimum expected relative entropy. Various ensembles and their thermodynamic potentials can be defined through relative entropy. We also show that thermal fluctuations are in fact governed by a relative entropy. Furthermore we reformulate the third law of thermodynamics using relative entropy only.
A parallel implementation of coupled spin-lattice dynamics in the LAMMPS molecular dynamics package is presented. The equations of motion for both spin only and coupled spin-lattice dynamics are first reviewed, including a detailed account of how magneto-mechanical potentials can be used to perform a proper coupling between spin and lattice degrees of freedom. A symplectic numerical integration algorithm is then presented which combines the Suzuki-Trotter decomposition for non-commuting variables and conserves the geometric properties of the equations of motion. The numerical accuracy of the serial implementation was assessed by verifying that it conserves the total energy and the norm of the total magnetization up to second order in the timestep size. Finally, a very general parallel algorithm is proposed that allows large spin-lattice systems to be efficiently simulated on large numbers of processors without degrading its mathematical accuracy. Its correctness as well as scaling efficiency were tested for realistic coupled spin-lattice systems, confirming that the new parallel algorithm is both accurate and efficient.
Searching for topological insulators/superconductors is one central subject in recent condensed matter physics. As a theoretical aspect, various classification methods of symmetry-protected topological phases have been developed, where the topology of a gapped Hamiltonian is investigated from the viewpoint of its onsite/crystal symmetry. On the other hand, topological physics also appears in semimetals, whose gapless points can be characterized by topological invariants. Stimulated by the backgrounds, we shed light on the topology of nodal superconductors. In this paper, we review our modern topological classification theory of superconducting gap nodes in terms of symmetry. The classification method elucidates nontrivial gap structures arising from nonsymmorphic symmetry or angular momentum, which cannot be predicted by a conventional theory.
We revisit the universal behavior of crystalline membranes at and below the crumpling transition, which pertains to the mechanical properties of important soft and hard matter materials, such as the cytoskeleton of red blood cells or graphene. Specifically, we perform large-scale Monte Carlo simulations of a triangulated two-dimensional phantom network which is freely fluctuating in three-dimensional space. We obtain a continuous crumpling transition characterized by critical exponents which we estimate accurately through the use of finite-size techniques. By controlling the scaling corrections, we additionally compute with high accuracy the asymptotic value of the Poisson ratio in the flat phase, thus characterizing the auxetic properties of this class of systems. We obtain agreement with the value which is universally expected for polymerized membranes with a fixed connectivity.
The Pair Approximation method has been formulated for the isotropic ferromagnetic Heisenberg model with spin $S=1$. The exchange interactions of arbitrary range have been taken into account. The single-ion anisotropy has been considered as well as the external magnetic field. Within the method, the Gibbs free-energy has been derived, from which all thermodynamic properties can be self-consistently obtained. In order to illustrate the developed formalism, the numerical calculations have been performed for CrIAs planar magnetic semiconductor, a hypothetical material whose existence has been recently predicted by the Density Functional Theory-based calculations. For this model material, all the relevant thermodynamic magnetic properties have been studied. The numerical results have been presented in the figures and discussed.