Do you want to publish a course? Click here

Analytic Continuation of Spin foam Models

167   0   0.0 ( 0 )
 Added by Hongguang Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Lorentzian Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) spinfoam model and the Conrady-Hnybida (CH) timelike-surface extension can be expressed in the integral form $int e^S$. This work studies the analytic continuation of the spinfoam action $S$ to the complexification of the integration domain. Our work extends our knowledge from the real critical points well-studied in the spinfoam large-$j$ asymptotics to general complex critical points of $S$ analytic continued to the complexified domain. The complex critical points satisfying critical equations of the analytic continued $S$. In the large-$j$ regime, the complex critical points give subdominant contributions to the spinfoam amplitude when the real critical points are present. But the contributions from the complex critical points can become dominant when the real critical point are absent. Moreover the contributions from the complex critical points cannot be neglected when the spins $j$ are not large. In this paper, we classify the complex critical points of the spinfoam amplitude, and find a subclass of complex critical points that can be interpreted as 4-dimensional simplicial geometries. In particular, we identify the complex critical points corresponding to the Riemannian simplicial geometries although we start with the Lorentzian spinfoam model. The contribution from these complex critical points of Riemannian geometry to the spinfoam amplitude give $e^{-S_{Regge}}$ in analogy with the Euclidean path integral, where $S_{Regge}$ is the Riemannian Regge action on simplicial complex.



rate research

Read More

The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.
107 - S. P. Miao 2013
A nice paper by Morrison demonstrates the recent convergence of opinion that has taken place concerning the graviton propagator on de Sitter background. We here discuss the few points which remain under dispute. First, the inevitable decay of tachyonic scalars really does result in their 2-point functions breaking de Sitter invariance. This is obscured by analytic continuation techniques which produce formal solutions to the propagator equation that are not propagators. Second, Morrisons de Sitter invariant solution for the spin two sector of the graviton propagator involves derivatives of the scalar propagator at $M^2 = 0$, where it is not meromorphic unless de Sitter breaking is permitted. Third, de Sitter breaking does not require zero modes. Fourth, the ambiguity Morrison claims in the equation for the spin two structure function is fixed by requiring it to derive from a mode sum. Fifth, Morrisons spin two sector is not physically equivalent to ours because their coincidence limits differ. Finally, it is only the noninvariant propagator that gets the time independence and scale invariance of the tensor power spectrum correctly.
95 - R. De Pietri 1999
The canonical ``loop formulation of quantum gravity is a mathematically well defined, background independent, non perturbative standard quantization of Einsteins theory of General Relativity. Some among the most meaningful results of the theory are: 1) the complete calculation of the spectrum of geometric quantities like the area and the volume and the consequent physical predictions about the structure of the space-time at the Plank scale; 2) a microscopical derivation of the Bekenstein-Hawking black-hole entropy formula. Unfortunately, despite recent results, the dynamical aspect of the theory (imposition of the Wheller-De Witt constraint) remains elusive. After a short description of the basic ideas and the main results of loop quantum gravity we show in which sence the exponential of the super Hamiltonian constraint leads to the concept of spin foam and to a four dimensional formulation of the theory. Moreover, we show that some topological field theories as the BF theory in 3 and 4 dimension admits a spin foam formulation. We argue that the spin-foams/spin-networks formalism it is the natural framework to discuss loop quantum gravity and topological field theory.
We define the analytic continuation of the number of black hole microstates in Loop Quantum Gravity to complex values of the Barbero-Immirzi parameter $gamma$. This construction deeply relies on the link between black holes and Chern-Simons theory. Technically, the key point consists in writing the number of microstates as an integral in the complex plane of a holomorphic function, and to make use of complex analysis techniques to perform the analytic continuation. Then, we study the thermodynamical properties of the corresponding system (the black hole is viewed as a gas of indistinguishable punctures) in the framework of the grand canonical ensemble where the energy is defined a la Frodden-Gosh-Perez from the point of view of an observer located close to the horizon. The semi-classical limit occurs at the Unruh temperature $T_U$ associated to this local observer. When $gamma=pm i$, the entropy reproduces at the semi-classical limit the area law with quantum corrections. Furthermore, the quantum corrections are logarithmic provided that the chemical potential is fixed to the simple value $mu=2T_U$.
The tidal response of a compact object is a key gravitational-wave observable encoding information about its interior. This link is subtle due to the nonlinearities of general relativity. We show that considering a scattering process bypasses challenges with potential ambiguities, as the tidal response is determined by the asymptotic in- and outgoing waves at null infinity. As an application of the general method, we analyze scalar waves scattering off a nonspinning black hole and demonstrate that the frequency-dependent tidal response calculated for arbitrary dimensions and multipoles reproduces known results for the Love number and absorption in limiting cases. In addition, we discuss the definition of the response based on gauge-invariant observables obtained from an effective action description, and clarify the role of analytic continuation for robustly (i) extracting the response and the physical information it contains, and (ii) distinguishing high-order post-Newtonian corrections from finite-size effects in a binary system. Our work is important for interpreting upcoming gravitational-wave data for subatomic physics of ultradense matter in neutron stars, probing black holes and gravity, and looking for beyond standard model fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا