Do you want to publish a course? Click here

On the complexity of spinels: Magnetic, electronic, and polar ground states

67   0   0.0 ( 0 )
 Added by Alois Loidl
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This review summarizes more than 100 years of research on spinel compounds, mainly focusing on the progress in understanding their magnetic, electronic, and polar properties during the last two decades. Many spinel compounds are magnetic insulators or semiconductors; however, a number of spinel-type metals exists including superconductors and some rare examples of d-derived heavy-fermion compounds. In the early days, they gained importance as ferrimagnetic or even ferromagnetic insulators with relatively high saturation magnetization and high ordering temperatures, with magnetite being the first magnetic mineral known to mankind. However, spinels played an outstanding role in the development of concepts of magnetism, in testing and verifying the fundamentals of magnetic exchange, in understanding orbital-ordering and charge-ordering phenomena. In addition, the A- site as well as the B-site cations in the spinel structure form lattices prone to strong frustration effects resulting in exotic ground-state properties. In case the A-site cation is Jahn-Teller active, additional entanglements of spin and orbital degrees of freedom appear, which can give rise to a spin-orbital liquid or an orbital glass state. The B-site cations form a pyrochlore lattice, one of the strongest contenders of frustration in three dimensions. In addition, in spinels with both cation lattices carrying magnetic moments, competing magnetic exchange interactions become important, yielding ground states like the time-honoured triangular Yafet-Kittel structure. Finally, yet importantly, there exists a long-standing dispute about the possibility of a polar ground state in spinels, despite their reported overall cubic symmetry. Indeed, over the years number of multiferroic spinels were identified.



rate research

Read More

We analyzed the magnetic susceptibilities of several Cr spinels using two recent models for the geometrically frustrated pyrochlore lattice, the Quantum Tetrahedral Mean Field model and a Generalized Constant Coupling model. Both models can describe the experimental data for ACr2 O4 (with A = Zn, Mg, and Cd) satisfactorily, with the former yielding a somewhat better agreement with experiment for A = Zn, Mg. The obtained exchange constants for nearest and next-nearest neighbors are discussed.
Using neutron powder diffraction and Monte-Carlo simulations we show that a spin-liquid regime emerges at $all compositions in the diamond-lattice antiferromagnets Co(Al1-xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbour exchange coupling J2, is gradually superseded by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B-site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third-neighbour exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1-xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher efficiency of O-Co3+-O as an interaction path compared to O-Al3+-O.
We report a combined muon spin relaxation/rotation, bulk magnetization, neutron scattering, and transport study of the electronic properties of the pyrochlore iridate Nd2Ir2O7. We observe the onset of strongly hysteretic behavior in the temperature dependent magnetization below 120 K, and an abrupt increase in the temperature dependent resistivity below 8 K. Zero field muon spin relaxation measurements show that the hysteretic magnetization is driven by a transition to a magnetically disordered state, and that below 8 K a complex magnetically ordered ground state sets in, as evidenced by the onset of heavily damped spontaneous muon precession. Our measurements point toward the absence of a true metal-to-insulator phase transition in this material and suggest that Nd2Ir2O7 lies either within or on the metallic side of the boundary of the Dirac semimetal regime within its topological phase diagram.
We study vanadium spinels $A$V$_2$O$_4$ ($A$ = Cd, Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at $mu_0 H approx$ 40 T is observed in the single-crystal MgV$_2$O$_4$, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV$_2$O$_4$, the field-induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field-induced transition can be successfully explained by including the effects of the local trigonal crystal field.
We have studied NpPdSn by means of the heat capacity, electrical resistivity, Seebeck and Hall effect, $^{237}$Np M{o}ssbauer spectroscopy, and neutron diffraction measurements in the temperature range 2-300 K and under magnetic fields up to 14 T. NpPdSn orders antiferromagnetically below the Neel temperature $T_N$ = 19 K and shows localized magnetism of Np$^{3+}$ ion with a a doubly degenerate ground state. In the magnetic state the electrical resistivity and heat capacity are characterized by electron-magnon scattering with spin-waves spectrum typical of anisotropic antiferromagnets. An enhanced Sommerfeld coefficient and typical behavior of magnetorestistivity, Seebeck and Hall coefficients are all characteristic of systems with strong electronic correlations. The low temperature antiferromagnetic state of NpPdSn is verified by neutron diffraction and $^{237}$Np M{o}ssbauer spectroscopy and possible magnetic structures are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا