Batch Optimization of Frequency-Modulated Pulse for Robust Two-qubit Gates in Ion Chains


Abstract in English

Two-qubit gates in trapped ion quantum computers are generated by applying spin-dependent forces that temporarily entangle the internal state of the ion with its motion. Laser pulses are carefully designed to generate a maximally entangling gate between the ions while minimizing any residual entanglement between the motion and the ion. The quality of the gates suffers when actual experimental parameters differ from the ideal case. Here we improve the robustness of frequency-modulated M{o}lmer-S{o}rensen gates to motional mode frequency offsets by optimizing average performance over a range of systematic errors using batch optimization. We then compare this method to frequency modulated gates optimized for ideal parameters that include an analytic robustness condition. Numerical simulations show good performance up to 12 ions and the method is experimentally demonstrated on a two-ion chain.

Download