Do you want to publish a course? Click here

The Schrodinger particle on the half-line with an attractive $delta$-interaction: bound states and resonances

74   0   0.0 ( 0 )
 Added by Luis M. Nieto
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we provide a detailed description of the eigenvalue $ E_{D}(x_0)leq 0$ (respectively $ E_{N}(x_0)leq 0$) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an attractive Dirac distribution $-lambda delta(x-x_0)$ for any fixed value of the magnitude of the coupling constant. We also investigate the $lambda$-dependence of both eigenvalues for any fixed value of $x_0$. Furthermore, we show that both systems exhibit resonances as poles of the analytic continuation of the resolvent. These results will be connected with the study of the ground state energy of two remarkable three-dimensional self-adjoint operators, studied in depth in Albeverios monograph, perturbed by an attractive $delta$-distribution supported on the spherical shell of radius $r_0$.



rate research

Read More

For multi-time wave functions, which naturally arise as the relativistic particle-position representation of the quantum state vector, the analog of the Schrodinger equation consists of several equations, one for each time variable. This leads to the question of how to prove the consistency of such a system of PDEs. The question becomes more difficult for theories with particle creation, as then different sectors of the wave function have different numbers of time variables. Petrat and Tumulka (2014) gave an example of such a model and a non-rigorous argument for its consistency. We give here a rigorous version of the argument after introducing an ultraviolet cut-off into the creation and annihilation terms of the multi-time evolution equations. These equations form an infinite system of coupled PDEs; they are based on the Dirac equation but are not fully relativistic (in part because of the cut-off). We prove the existence and uniqueness of a smooth solution to this system for every initial wave function from a certain class that corresponds to a dense subspace in the appropriate Hilbert space.
In this paper we extend the results of Lenci and Rey-Bellet on the large deviation upper bound of the distribution measures of local Hamiltonians with respect to a Gibbs state, in the setting of translation-invariant finite-range interactions. We show that a certain factorization property of the reference state is sufficient for a large deviation upper bound to hold and that this factorization property is satisfied by Gibbs states of the above kind as well as finitely correlated states. As an application of the methods the Chernoff bound for correlated states with factorization property is studied. In the specific case of the distributions of the ergodic averages of a one-site observable with respect to an ergodic finitely correlated state the spectral theory of positive maps is applied to prove the full large deviation principle.
We analyze the Schrodinger operator in two-dimensions with an attractive potential given by a Bessel-Macdonald function. This operator is derived in the non-relativistic approximation of planar quantum electrodynamics (${rm QED}_3$) models as a framework for evaluation of two-quasiparticle scattering potentials. The analysis is motivated keeping in mind the fact that parity-preserving ${rm QED}_3$ models can provide a possible explanation for the behavior of superconductors. Initially, we study the self-adjointness and spectral properties of the Schrodinger operator modeling the non-relativistic approximation of these ${rm QED}_3$ models. Then, by using {em Set^o-type estimates}, an estimate is derived of the number of two-particle bound states which depends directly on the value of the effective coupling constant, $C$, for {em any} value of the angular momentum. In fact, this result in connection with the condition that guarantees the self-adjointness of the Schrodinger operator shows that there can always be a large number of two-quasiparticle bound states in planar quantum electrodynamics models. In particular, we show the existence of an isolated two-quasiparticle bound state if the effective coupling constant $C in (0,2)$ in case of zero angular momentum. To the best of our knowledge, this result has not yet been addressed in the literature. Additionally, we obtain an explicit estimate for the energy gap of two-quasiparticle bound states which might be applied to high-$T_c$ $s$-wave Cooper-type superconductors as well as to $s$-wave electron-polaron--electron-polaron bound states (bipolarons) in mass-gap graphene systems.
We describe coherent states and associated generalized Grassmann variables for a system of $m$ independent $q$-boson modes. A resolution of unity in terms of generalized Berezin integrals leads to generalized Grassmann symbolic calculus. Formulae for operator traces are given and the thermodynamic partition function for a system of $q$-boson oscillators is discussed.
149 - D. Cevik , M. Gadella , S. Kuru 2016
We analyze the one dimensional scattering produced by all variations of the Poschl-Teller potential, i.e., potential well, low and high barriers. We show that the Poschl-Teller well and low barrier potentials have no resonance poles, but an infinite number of simple poles along the imaginary axis corresponding to bound and antibound states. A quite different situation arises on the Poschl-Teller high barrier potential, which shows an infinite number of resonance poles and no other singularities. We have obtained the explicit form of their associated Gamow states. We have also constructed ladder operators connecting wave functions for bound and antibound states as well as for resonance states. Finally, using wave functions of Gamow and antibound states in the factorization method, we construct some examples of supersymmetric partners of the Poschl-Teller Hamiltonian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا