Do you want to publish a course? Click here

Consistency between dynamical and thermodynamical stabilities for charged self-gravitating perfect fluid

183   0   0.0 ( 0 )
 Added by Xiongjun Fang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The entropy principle shows that, for self-gravitating perfect fluid, the Einstein field equations can be derived from the extrema of the total entropy, and the thermodynamical stability criterion are equivalent to the dynamical stability criterion. In this paper, we recast the dynamical criterion for the charged self-gravitating perfect fluid in Einstein-Maxwell theory, and further give the criterion of the star with barotropic condition. In order to obtain the thermodynamical stability criterion, first we get the general formula of the second variation of the total entropy for charged perfect fluid case, and then obtain the thermodynamical criterion for radial perturbation. We show that these two stability criterion are the same, which suggest that the inherent connection between gravity and thermodynamic even when the electric field is taken into account.



rate research

Read More

We consider a static self-gravitating system consisting of perfect fluid with isometries of an $(n-2)$-dimensional maximally symmetric space in Lovelock gravity theory. A straightforward analysis of the time-time component of the equations of motion suggests a generalized mass function. Tolman-Oppenheimer-Volkoff like equation is obtained by using this mass function and gravitational equations. We investigate the maximum entropy principle in Lovelock gravity, and find that this Tolman-Oppenheimer-Volkoff equation can also be deduced from the so called maximum entropy principle which is originally customized for Einstein gravity theory. This investigation manifests a deep connection between gravity and thermodynamics in this generalized gravity theory.
It is shown that the dynamical evolution of linear perturbations on a static space-time is governed by a constrained wave equation for the extrinsic curvature tensor. The spatial part of the wave operator is manifestly elliptic and self-adjoint. In contrast to metric formulations, the curvature-based approach to gravitational perturbation theory generalizes in a natural way to self-gravitating matter fields. It is also demonstrated how to obtain symmetric pulsation equations for self-gravitating non-Abelian gauge fields, Higgs fields and perfect fluids. For vacuum fluctuations on a vacuum space-time, the Regge-Wheeler and Zerilli equations are rederived.
The interpretation of a family of electrovacuum stationary Taub-NUT-type fields in terms of finite charged perfect fluid disks is presented. The interpretation is mades by means of an inverse problem approach used to obtain disk sources of known solutions of the Einstein or Einstein-Maxwell equations. The diagonalization of the energy-momentum tensor of the disks is facilitated in this case by the fact that it can be written as an upper right triangular matrix. We find that the inclusion of electromagnetic fields changes significatively the different material properties of the disks and so we can obtain, for some values of the parameters, finite charged perfect fluid disks that are in agreement with all the energy conditions.
105 - B. J. Carr 2000
The asymptotic properties of self-similar spherically symmetric perfect fluid solutions with equation of state p=alpha mu (-1<alpha<1) are described. We prove that for large and small values of the similarity variable, z=r/t, all such solutions must have an asymptotic power-law form. Some of them are associated with an exact power-law solution, in which case they are asymptotically Friedmann or asymptotically Kantowski-Sachs for 1>alpha >-1 or asymptotically static for 1>alpha >0. Others are associated with an approximate power-law solution, in which case they are asymptotically quasi-static for 1>alpha >0 or asymptotically Minkowski for 1>alpha >1/5. We also show that there are solutions whose asymptotic behaviour is associated with finite values of z and which depend upon powers of ln z. These correspond either to a second family of asymptotically Minkowski solutions for 1>alpha>1/5 or to solutions that are asymptotically Kasner for 1>alpha>-1/3. There are some other asymptotic power-law solutions associated with negative alpha, but the physical significance of these is unclear. The asymptotic form of the solutions is given in all cases, together with the number of associated parameters.
We consider the lagrangian of a self-interacting complex scalar field admitting generically Q-balls solutions. This model is extended by minimal coupling to electromagnetism and to gravity. A stationnary, axially-symmetric ansatz for the different fields is used in order to reduce the classical equations. The system of non-linear partial differential equations obtained becomes a boundary value problem by supplementing a suitable set of boundary conditions. We obtain numerical evidences that the angular excitations of uncharged Q-balls, which exist in flat space-time, get continuously deformed by the Maxwell and the Einstein terms. The electromagnetic and gravitating properties of several solutions, including the spinning Q-balls, are emphasized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا