It is well known that linear rank-metric codes give rise to $q$-polymatroids. Analogously to classical matroid theory one may ask whether a given $q$-polymatroid is representable by a rank-metric code. We provide a partial answer by presenting examples of $q$-matroids that are not representable by ${mathbb F}_{q^m}$-linear rank-metric codes. We then go on and introduce deletion and contraction for $q$-polymatroids and show that they are mutually dual and that they correspond to puncturing and shortening of rank-metric codes. Finally, we introduce a closure operator along with the notion of flats and show that the generalized rank weights of a rank-metric code are fully determined by the flats of the associated $q$-polymatroid.
We speed up existing decoding algorithms for three code classes in different metrics: interleaved Gabidulin codes in the rank metric, lifted interleaved Gabidulin codes in the subspace metric, and linearized Reed-Solomon codes in the sum-rank metric. The speed-ups are achieved by new algorithms that reduce the cores of the underlying computational problems of the decoders to one common tool: computing left and right approximant bases of matrices over skew polynomial rings. To accomplish this, we describe a skew-analogue of the existing PM-Basis algorithm for matrices over ordinary polynomials. This captures the bulk of the work in multiplication of skew polynomials, and the complexity benefit comes from existing algorithms performing this faster than in classical quadratic complexity. The new algorithms for the various decoding-related computational problems are interesting in their own and have further applications, in particular parts of decoders of several other codes and foundational problems related to the remainder-evaluation of skew polynomials.
In this note, we provide a description of the elements of minimum rank of a generalized Gabidulin code in terms of Grassmann coordinates. As a consequence, a characterization of linearized polynomials of rank at most $n-k$ is obtained, as well as parametric equations for MRD-codes of distance $d=n-k+1$.
This paper extends the study of rank-metric codes in extension fields $mathbb{L}$ equipped with an arbitrary Galois group $G = mathrm{Gal}(mathbb{L}/mathbb{K})$. We propose a framework for studying these codes as subspaces of the group algebra $mathbb{L}[G]$, and we relate this point of view with usual notions of rank-metric codes in $mathbb{L}^N$ or in $mathbb{K}^{Ntimes N}$, where $N = [mathbb{L} : mathbb{K}]$. We then adapt the notion of error-correcting pairs to this context, in order to provide a non-trivial decoding algorithm for these codes. We then focus on the case where $G$ is abelian, which leads us to see codewords as elements of a multivariate skew polynomial ring. We prove that we can bound the dimension of the vector space of zeroes of these polynomials, depending of their degree. This result can be seen as an analogue of Alon-Furedi theorem -- and by means, of Schwartz-Zippel lemma -- in the rank metric. Finally, we construct the counterparts of Reed-Muller codes in the rank metric, and we give their parameters. We also show the connection between these codes and classical Reed-Muller codes in the case where $mathbb{L}$ is a Kummer extension.
We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been considered in the literature: families of sum-rank-metric codes whose block size grows in the code length. We also provide two genericity results: we show that random linear codes achieve almost the sum-rank-metric Gilbert--Varshamov bound with high probability. Furthermore, we derive bounds on the probability that a random linear code attains the sum-rank-metric Singleton bound, showing that for large enough extension fields, almost all linear codes achieve it.
This paper investigates the theory of sum-rank metric codes for which the individual matrix blocks may have different sizes. Various bounds on the cardinality of a code are derived, along with their asymptotic extensions. The duality theory of sum-rank metric codes is also explored, showing that MSRD codes (the sum-rank analogue of MDS codes) dualize to MSRD codes only if all matrix blocks have the same number of columns. In the latter case, duality considerations lead to an upper bound on the number of blocks for MSRD codes. The paper also contains various constructions of sum-rank metric codes for variable block sizes, illustrating the possible behaviours of these objects with respect to bounds, existence, and duality properties.