No Arabic abstract
In all known explicit computations on Weinstein manifolds, the self-wrapped Floer homology of non-compact exact Lagrangian is always either infinite-dimensional or zero. We show that a global variant of this observed phenomenon holds in broad generality: the wrapped Fukaya category of any positive-dimensional Weinstein (or non-degenerate Liouville) manifold is always either non-proper or zero, as is any quotient thereof. Moreover any non-compact connected exact Lagrangian is always either a (both left and right) non-proper object or zero in such a wrapped Fukaya category, as is any idempotent summand thereof. We also examine criteria under which the argument persists or breaks if one drops exactness, which is consistent with known computations of non-exact wrapped Fukaya categories which are smooth, proper, and non-vanishing (e.g., work of Ritter-Smith).
We introduce a class of Liouville manifolds with boundary which we call Liouville sectors. We define the wrapped Fukaya category, symplectic cohomology, and the open-closed map for Liouville sectors, and we show that these invariants are covariantly functorial with respect to inclusions of Liouville sectors. From this foundational setup, a local-to-global principle for Abouzaids generation criterion follows.
We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding $S^1$-equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicity exact sequences and are isomorphisms whenever the (non-equivariant) open-closed map is. These {em cyclic open-closed maps} give (a) constructions of geometric smooth and/or proper Calabi-Yau structures on Fukaya categories (which in the proper case implies the Fukaya category has a cyclic A-infinity model in characteristic 0) and (b) a purely symplectic proof of the non-commutative Hodge-de Rham degeneration conjecture for smooth and proper subcategories of Fukaya categories of compact symplectic manifolds. Further applications of cyclic open-closed maps, to counting curves in mirror symmetry and to comparing topological field theories, are the subject of joint projects with Perutz-Sheridan [GPS1, GPS2] and Cohen [CG].
The Nadler-Zaslow correspondence famously identifies the finite-dimensional Floer homology groups between Lagrangians in cotangent bundles with the finite-dimensional Hom spaces between corresponding constructible sheaves. We generalize this correspondence to incorporate the infinite-dimensional spaces of morphisms at infinity, given on the Floer side by Reeb trajectories (also known as wrapping) and on the sheaf side by allowing unbounded infinite rank sheaves which are categorically compact. When combined with existing sheaf theoretic computations, our results confirm many new instances of homological mirror symmetry. More precisely, given a real analytic manifold $M$ and a subanalytic isotropic subset $Lambda$ of its co-sphere bundle $S^*M$, we show that the partially wrapped Fukaya category of $T^*M$ stopped at $Lambda$ is equivalent to the category of compact objects in the unbounded derived category of sheaves on $M$ with microsupport inside $Lambda$. By an embedding trick, we also deduce a sheaf theoretic description of the wrapped Fukaya category of any Weinstein sector admitting a stable polarization.
We use quilted Floer theory to construct functor-valued invariants of tangles arising from moduli spaces of flat bundles on punctured surfaces. As an application, we show the non-triviality of certain elements in the symplectic mapping class groups of moduli spaces of flat bundles on punctured spheres.
In this paper, we discuss Floer homology of Lagrangian submanifolds in an open symplectic manifold given as the complement of a smooth divisor. Firstly, a compactification of moduli spaces of holomorphic strips in a smooth divisor complement is introduced. Next, this compactification is used to define Lagrangian Floer homology of two Lagrangians in the divisor complement. The main new feature of this paper is that we do not make any assumption on positivity or negativity of the divisor.