No Arabic abstract
We present and analyze optical photometry and high resolution SALT spectra of the symbiotic recurrent nova V3890 Sgr at quiescence. The orbital period, P=747.6 days has been derived from both photometric and spectroscopic data. Our double-line spectroscopic orbits indicate that the mass ratio is q=M_g/M_WD=0.78+/-0.05, and that the component masses are M_WD=1.35+/-0.13 Msun, and M_g=1.05+/-0.11 Msun. The orbit inclination is approximately 67-69 degr. The red giant is filling (or nearly filling) its Roche lobe, and the distance set by its Roche lobe radius, d=9 kpc, is consistent with that resulting from the giant pulsation period. The outburst magnitude of V3890 Sgr is then very similar to those of RNe in the Large Magellanic Cloud. V3890 Sgr shows remarkable photometric and spectroscopic activity between the nova eruptions with timescales similar to those observed in the symbiotic recurrent novae T CrB and RS Oph and Z And-type symbiotic systems. The active source has a double-temperature structure which we have associated with the presence of an accretion disc. The activity would be then caused by changes in the accretion rate. We also provide evidence that V3890 Sgr contains a CO WD accreting at a high, a few 1e-8 - 1e-7 Msun/yr, rate. The WD is growing in mass, and should give rise to a Type Ia supernova within about 1,000,000 yrs - the expected lifetime of the red giant.
Two long AstroSat Soft X-ray Telescope observations were taken of the third recorded outburst of the Symbiotic Recurrent Nova, V3890 Sgr. The first observing run, 8.1-9.9 days after the outburst, initially showed a stable intensity level with a hard X-ray spectrum that we attribute to shocks between the nova ejecta and the pre-existing stellar companion. On day 8.57, the first, weak, signs appeared of Super Soft Source (SSS) emission powered by residual burning on the surface of the White Dwarf. The SSS emission was observed to be highly variable on time scales of hours. After day 8.9, the SSS component was more stable and brighter. In the second observing run, on days 15.9-19.6 after the outburst, the SSS component was even brighter but still highly variable. The SSS emission was observed to fade significantly during days 16.8-17.8 followed by re-brightening. Meanwhile the shock component was stable leading to increase in hardness ratio during the period of fading. AstroSat and XMM-Newton observations have been used to study the spectral properties of V3890 Sgr to draw quantitative conclusions even if their drawback is model-dependence. We used the xspec to fit spectral models of plasma emission, and the best fits are consistent with the elemental abundances being lower during the second observing run compared to the first for spectra >1 keV. The SSS emission is well fit by non-local thermal equilibrium model atmosphere used for white dwarfs. The resulting spectral parameters, however, are subject to systematic uncertainties such as completeness of atomic data.
V3890 Sgr is a recurrent nova which has been seen in outburst three times so far, with the most recent eruption occurring on 2019 August 27 UT. This latest outburst was followed in detail by the Neil Gehrels Swift Observatory, from less than a day after the eruption until the nova entered the Sun observing constraint, with a small number of additional observations after the constraint ended. The X-ray light-curve shows initial hard shock emission, followed by an early start of the super-soft source phase around day 8.5, with the soft emission ceasing by day 26. Together with the peak blackbody temperature of the super-soft spectrum being ~100 eV, these timings suggest the white dwarf mass to be high, ~1.3 M_sun. The UV photometric light-curve decays monotonically, with the decay rate changing a number of times, approximately simultaneously with variations in the X-ray emission. The UV grism spectra show both line and continuum emission, with emission lines of N, C, Mg and O being notable. These UV spectra are best dereddened using an SMC extinction law. Optical spectra from SMARTS show evidence of interaction between the nova ejecta and wind from the donor star, as well as the extended atmosphere of the red giant being flash-ionized by the super-soft X-ray photons. Data from NICER reveal a transient 83 s quasi-periodic oscillation, with a modulation amplitude of 5 per cent, adding to the sample of novae which show such short variabilities during their super-soft phase.
Classical nova outburst has been suggested for a number of extragalactic symbiotic stars, but in none of the systems has it been proven. In this work we study the nature of one of these systems, LMC S154. We gathered archival photometric observations in order to determine the timescales and nature of variability in this system. Additionally we carried out photometric and spectroscopic monitoring of the system and fitted synthetic spectra to the observations. Carbon abundance in the photosphere of the red giant is significantly higher than that derived for the nebula, which confirms pollution of the circumbinary material by the ejecta from nova outburst. The photometric and spectroscopic data show that the system reached quiescence in 2009, which means that for the first time all of the phases of a nova outburst were observed in an extragalactic symbiotic star. The data indicate that most probably there were three outbursts observed in LMC S154, which would make this system a member of a rare class of symbiotic recurrent novae. The recurrent nature of the system is supported by the discovery of coronal lines in the spectra, which are observed only in symbiotic stars with massive white dwarfs and with short-recurrence-time outbursts. Gathered evidence is sufficient to classify LMC S154 as the first bona fide extragalactic symbiotic nova, which is likely a recurrent nova. It is also the first nova with a carbon-rich donor.
The nova outburst experienced in 2010 by the symbiotic binary Mira V407 Cyg has been extensively studied at optical and infrared wavelengths with both photometric and spectroscopic observations. This outburst, reminiscent of similar events displayed by RS Oph, can be described as a very fast He/N nova erupting while being deeply embedded in the dense wind of its cool giant companion. The hard radiation from the initial thermonuclear flash ionizes and excites the wind of the Mira over great distances (recombination is observed on a time scale of 4 days). The nova ejecta is found to progressively decelerate with time as it expands into the Mira wind. This is deduced from line widths which change from a FWHM of 2760 km/s on day +2.3 to 200 km/s on day +196. The wind of the Mira is massive and extended enough for an outer neutral and unperturbed region to survive at all outburst phases.
Recurrent novae are binary stars in which a white dwarf accretes matter from a less evolved companion, either a red giant or a main-sequence star. They have dramatic optical brightenings of around 5-6 mag in V in less than a day, several times a century. These occur at variable and unpredictable intervals, and are followed by an optical decline over several weeks, and activity from the X-ray to the radio. The unpredictability of recurrent novae and related stellar types can hamper systematic study of their outbursts. Here we analyse the long-term lightcurve of RS Ophiuchi, a recurrent nova with six confirmed outbursts, most recently in 2006 February. We confirm the previously suspected 1945 outburst, largely obscured in a seasonal gap. We also find a signal via wavelet analysis that can be used to predict an incipient outburst up to a few hundred days before hand. This has never before been possible. In addition this may suggest that the preferred thermonuclear runaway mechanism for the outbursts will have to be modified, as no pre-outburst signal is anticipated in that case. If our result indeed points to gaps in our understanding of how outbursts are driven, we will need to study such objects carefully to determine if the white dwarf is growing in mass, an essential factor if these systems are to become Type Ia Supernovae. Determining the likelihood of recurrent novae being an important source population will have implications for stellar and galaxy evolution.