Do you want to publish a course? Click here

Model Learning with Personalized Interpretability Estimation (ML-PIE)

120   0   0.0 ( 0 )
 Added by Marco Virgolin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

High-stakes applications require AI-generated models to be interpretable. Current algorithms for the synthesis of potentially interpretable models rely on objectives or regularization terms that represent interpretability only coarsely (e.g., model size) and are not designed for a specific user. Yet, interpretability is intrinsically subjective. In this paper, we propose an approach for the synthesis of models that are tailored to the user by enabling the user to steer the model synthesis process according to her or his preferences. We use a bi-objective evolutionary algorithm to synthesize models with trade-offs between accuracy and a user-specific notion of interpretability. The latter is estimated by a neural network that is trained concurrently to the evolution using the feedback of the user, which is collected using uncertainty-based active learning. To maximize usability, the user is only asked to tell, given two models at the time, which one is less complex. With experiments on two real-world datasets involving 61 participants, we find that our approach is capable of learning estimations of interpretability that can be very different for different users. Moreover, the users tend to prefer models found using the proposed approach over models found using non-personalized interpretability indices.

rate research

Read More

Recent successes of Deep Neural Networks (DNNs) in a variety of research tasks, however, heavily rely on the large amounts of labeled samples. This may require considerable annotation cost in real-world applications. Fortunately, active learning is a promising methodology to train high-performing model with minimal annotation cost. In the deep learning context, the critical question of active learning is how to precisely identify the informativeness of samples for DNN. In this paper, inspired by piece-wise linear interpretability in DNN, we introduce the linearly separable regions of samples to the problem of active learning, and propose a novel Deep Active learning approach by Model Interpretability (DAMI). To keep the maximal representativeness of the entire unlabeled data, DAMI tries to select and label samples on different linearly separable regions introduced by the piece-wise linear interpretability in DNN. We focus on modeling Multi-Layer Perception (MLP) for modeling tabular data. Specifically, we use the local piece-wise interpretation in MLP as the representation of each sample, and directly run K-Center clustering to select and label samples. To be noted, this whole process of DAMI does not require any hyper-parameters to tune manually. To verify the effectiveness of our approach, extensive experiments have been conducted on several tabular datasets. The experimental results demonstrate that DAMI constantly outperforms several state-of-the-art compared approaches.
While federated learning traditionally aims to train a single global model across decentralized local datasets, one model may not always be ideal for all participating clients. Here we propose an alternative, where each client only federates with other relevant clients to obtain a stronger model per client-specific objectives. To achieve this personalization, rather than computing a single model average with constant weights for the entire federation as in traditional FL, we efficiently calculate optimal weighted model combinations for each client, based on figuring out how much a client can benefit from anothers model. We do not assume knowledge of any underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest, enabling greater flexibility for personalization. We evaluate and characterize our method on a variety of federated settings, datasets, and degrees of local data heterogeneity. Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
Machine Learning is transitioning from an art and science into a technology available to every developer. In the near future, every application on every platform will incorporate trained models to encode data-based decisions that would be impossible for developers to author. This presents a significant engineering challenge, since currently data science and modeling are largely decoupled from standard software development processes. This separation makes incorporating machine learning capabilities inside applications unnecessarily costly and difficult, and furthermore discourage developers from embracing ML in first place. In this paper we present ML .NET, a framework developed at Microsoft over the last decade in response to the challenge of making it easy to ship machine learning models in large software applications. We present its architecture, and illuminate the application demands that shaped it. Specifically, we introduce DataView, the core data abstraction of ML .NET which allows it to capture full predictive pipelines efficiently and consistently across training and inference lifecycles. We close the paper with a surprisingly favorable performance study of ML .NET compared to more recent entrants, and a discussion of some lessons learned.
Machine learning is an established and frequently used technique in industry and academia but a standard process model to improve success and efficiency of machine learning applications is still missing. Project organizations and machine learning practitioners have a need for guidance throughout the life cycle of a machine learning application to meet business expectations. We therefore propose a process model for the development of machine learning applications, that covers six phases from defining the scope to maintaining the deployed machine learning application. The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project. The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications, as the risk of model degradation in a changing environment is eminent. With each task of the process, we propose quality assurance methodology that is suitable to adress challenges in machine learning development that we identify in form of risks. The methodology is drawn from practical experience and scientific literature and has proven to be general and stable. The process model expands on CRISP-DM, a data mining process model that enjoys strong industry support but lacks to address machine learning specific tasks. Our work proposes an industry and application neutral process model tailored for machine learning applications with focus on technical tasks for quality assurance.
The ability to interpret machine learning models has become increasingly important now that machine learning is used to inform consequential decisions. We propose an approach called model extraction for interpreting complex, blackbox models. Our approach approximates the complex model using a much more interpretable model; as long as the approximation quality is good, then statistical properties of the complex model are reflected in the interpretable model. We show how model extraction can be used to understand and debug random forests and neural nets trained on several datasets from the UCI Machine Learning Repository, as well as control policies learned for several classical reinforcement learning problems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا