Normalized solutions to the fractional Kirchhoff equations with combined nonlinearities


Abstract in English

In this paper, we study the existence and asymptotic properties of solutions to the following fractional Kirchhoff equation begin{equation*} left(a+bint_{mathbb{R}^{3}}|(-Delta)^{frac{s}{2}}u|^{2}dxright)(-Delta)^{s}u=lambda u+mu|u|^{q-2}u+|u|^{p-2}u quad hbox{in $mathbb{R}^3$,} end{equation*} with a prescribed mass begin{equation*} int_{mathbb{R}^{3}}|u|^{2}dx=c^{2}, end{equation*} where $sin(0, 1)$, $a, b, c>0$, $2<q<p<2_{s}^{ast}=frac{6}{3-2s}$, $mu>0$ and $lambdainmathbb{R}$ as a Lagrange multiplier. Under different assumptions on $q<p$, $c>0$ and $mu>0$, we prove some existence results about the normalized solutions. Our results extend the results of Luo and Zhang (Calc. Var. Partial Differential Equations 59, 1-35, 2020) to the fractional Kirchhoff equations. Moreover, we give some results about the behavior of the normalized solutions obtained above as $murightarrow0^{+}$.

Download