Do you want to publish a course? Click here

Combinatorics of polymer models of early metabolism

131   0   0.0 ( 0 )
 Added by Mike Steel Prof.
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Polymer models are a widely used tool to study the prebiotic formation of metabolism at the origins of life. Counts of the number of reactions in these models are often crucial in probabilistic arguments concerning the emergence of autocatalytic networks. In the first part of this paper, we provide the first exact description of the number of reactions under widely applied model assumptions. Conclusions from earlier studies rely on either approximations or asymptotic counting, and we show that the exact counts lead to similar, though not always identical, asymptotic results. In the second part of the paper, we investigate a novel model assumption whereby polymers are invariant under spatial rotation. We outline the biochemical relevance of this condition and again give exact enumerative and asymptotic formulae for the number of reactions.



rate research

Read More

Many organisms repartition their proteome in a circadian fashion in response to the daily nutrient changes in their environment. A striking example is provided by cyanobacteria, which perform photosynthesis during the day to fix carbon. These organisms not only face the challenge of rewiring their proteome every 12 hours, but also the necessity of storing the fixed carbon in the form of glycogen to fuel processes during the night. In this manuscript, we extend the framework developed by Hwa and coworkers (Scott et al., Science 330, 1099 (2010)) for quantifying the relatinship between growth and proteome composition to circadian metabolism. We then apply this framework to investigate the circadian metabolism of the cyanobacterium Cyanothece, which not only fixes carbon during the day, but also nitrogen during the night, storing it in the polymer cyanophycin. Our analysis reveals that the need to store carbon and nitrogen tends to generate an extreme growth strategy, in which the cells predominantly grow during the day, as observed experimentally. This strategy maximizes the growth rate over 24 hours, and can be quantitatively understood by the bacterial growth laws. Our analysis also shows that the slow relaxation of the proteome, arising from the slow growth rate, puts a severe constraint on implementing this optimal strategy. Yet, the capacity to estimate the time of the day, enabled by the circadian clock, makes it possible to anticipate the daily changes in the environment and mount a response ahead of time. This significantly enhances the growth rate by counteracting the detrimental effects of the slow proteome relaxation.
Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.
151 - Areejit Samal , Sanjay Jain 2007
Elucidating the architecture and dynamics of large scale genetic regulatory networks of cells is an important goal in systems biology. We study the system level dynamical properties of the genetic network of Escherichia coli that regulates its metabolism, and show how its design leads to biologically useful cellular properties. Our study uses the database (Covert et al., Nature 2004) containing 583 genes and 96 external metabolites which describes not only the network connections but also the boolean rule at each gene node that controls the switching on or off of the gene as a function of its inputs. We have studied how the attractors of the boolean dynamical system constructed from this database depend on the initial condition of the genes and on various environmental conditions corresponding to buffered minimal media. We find that the system exhibits homeostasis in that its attractors, that turn out to be fixed points or low period cycles, are highly insensitive to initial conditions or perturbations of gene configurations for any given fixed environment. At the same time the attractors show a wide variation when external media are varied implying that the system mounts a highly flexible response to changed environmental conditions. The regulatory dynamics acts to enhance the cellular growth rate under changed media. Our study shows that the reconstructed genetic network regulating metabolism in {it E. coli} is hierarchical, modular, and largely acyclic, with environmental variables controlling the root of the hierarchy. This architecture makes the cell highly robust to perturbations of gene configurations as well as highly responsive to environmental changes. The twin properties of homeostasis and response flexibility are achieved by this dynamical system even though it is not close to the edge of chaos.
We introduce an in silico model for the initial spread of an aberrant phenotype with Warburg-like overflow metabolism within a healthy homeostatic tissue in contact with a nutrient reservoir (the blood), aimed at characterizing the role of the microenvironment for aberrant growth. Accounting for cellular metabolic activity, competition for nutrients, spatial diffusion and their feedbacks on aberrant replication and death rates, we obtain a phase portrait where distinct asymptotic whole-tissue states are found upon varying the tissue-blood turnover rate and the level of blood-borne primary nutrient. Over a broad range of parameters, the spreading dynamics is bistable as random fluctuations can impact the final state of the tissue. Such a behaviour turns out to be linked to the re-cycling of overflow products by non-aberrant cells. Quantitative insight on the overall emerging picture is provided by a spatially homogeneous version of the model.
104 - Mike Steel , Wim Hordijk 2018
Self-sustaining autocatalytic networks play a central role in living systems, from metabolism at the origin of life, simple RNA networks, and the modern cell, to ecology and cognition. A collectively autocatalytic network that can be sustained from an ambient food set is also referred to more formally as a `Reflexively Autocatalytic F-generated (RAF) set. In this paper, we first investigate a simplified setting for studying RAFs, which are nevertheless relevant to real biochemistry and allows for a more exact mathematical analysis based on graph-theoretic concepts. This, in turn, allows for the development of efficient (polynomial-time) algorithms for questions that are computationally NP-hard in the general RAF setting. We then show how this simplified setting for RAF systems leads naturally to a more general notion of RAFs that are `generative (they can be built up from simpler RAFs) and for which efficient algorithms carry over to this more general setting. Finally, we show how classical RAF theory can be extended to deal with ensembles of catalysts as well as the assignment of rates to reactions according to which catalysts (or combinations of catalysts) are available.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا