No Arabic abstract
We present a simple yet effective Targeted Adversarial Training (TAT) algorithm to improve adversarial training for natural language understanding. The key idea is to introspect current mistakes and prioritize adversarial training steps to where the model errs the most. Experiments show that TAT can significantly improve accuracy over standard adversarial training on GLUE and attain new state-of-the-art zero-shot results on XNLI. Our code will be released at: https://github.com/namisan/mt-dnn.
This paper presents a new Unified pre-trained Language Model (UniLM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UniLM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UniLM achieves new state-of-the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm.
Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data. However, its unclear whether they learn similar representations or they can be effectively combined. In this paper, we show that TAPT and ST can be complementary with simple TFS protocol by following TAPT -> Finetuning -> Self-training (TFS) process. Experimental results show that TFS protocol can effectively utilize unlabeled data to achieve strong combined gains consistently across six datasets covering sentiment classification, paraphrase identification, natural language inference, named entity recognition and dialogue slot classification. We investigate various semi-supervised settings and consistently show that gains from TAPT and ST can be strongly additive by following TFS procedure. We hope that TFS could serve as an important semi-supervised baseline for future NLP studies.
In this work, we explore joint energy-based model (EBM) training during the finetuning of pretrained text encoders (e.g., Roberta) for natural language understanding (NLU) tasks. Our experiments show that EBM training can help the model reach a better calibration that is competitive to strong baselines, with little or no loss in accuracy. We discuss three variants of energy functions (namely scalar, hidden, and sharp-hidden) that can be defined on top of a text encoder, and compare them in experiments. Due to the discreteness of text data, we adopt noise contrastive estimation (NCE) to train the energy-based model. To make NCE training more effective, we train an auto-regressive noise model with the masked language model (MLM) objective.
We study the problem of adversarial language games, in which multiple agents with conflicting goals compete with each other via natural language interactions. While adversarial language games are ubiquitous in human activities, little attention has been devoted to this field in natural language processing. In this work, we propose a challenging adversarial language game called Adversarial Taboo as an example, in which an attacker and a defender compete around a target word. The attacker is tasked with inducing the defender to utter the target word invisible to the defender, while the defender is tasked with detecting the target word before being induced by the attacker. In Adversarial Taboo, a successful attacker must hide its intention and subtly induce the defender, while a competitive defender must be cautious with its utterances and infer the intention of the attacker. Such language abilities can facilitate many important downstream NLP tasks. To instantiate the game, we create a game environment and a competition platform. Comprehensive experiments and empirical studies on several baseline attack and defense strategies show promising and interesting results. Based on the analysis on the game and experiments, we discuss multiple promising directions for future research.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be effectively transferred to a small student Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture he general-domain as well as the task-specific knowledge in BERT. TinyBERT with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERTBASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT with 4 layers is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only about 28% parameters and about 31% inference time of them. Moreover, TinyBERT with 6 layers performs on-par with its teacher BERTBASE.