Do you want to publish a course? Click here

Extremely Low Footprint End-to-End ASR System for Smart Device

100   0   0.0 ( 0 )
 Added by Zhifu Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, end-to-end (E2E) speech recognition has become popular, since it can integrate the acoustic, pronunciation and language models into a single neural network, which outperforms conventional models. Among E2E approaches, attention-based models, e.g. Transformer, have emerged as being superior. Such models have opened the door to deployment of ASR on smart devices, however they still suffer from requiring a large number of model parameters. We propose an extremely low footprint E2E ASR system for smart devices, to achieve the goal of satisfying resource constraints without sacrificing recognition accuracy. We design cross-layer weight sharing to improve parameter efficiency and further exploit model compression methods including sparsification and quantization, to reduce memory storage and boost decoding efficiency. We evaluate our approaches on the public AISHELL-1 and AISHELL-2 benchmarks. On the AISHELL-2 task, the proposed method achieves more than 10x compression (model size reduces from 248 to 24MB), at the cost of only minor performance loss (CER reduces from 6.49% to 6.92%).

rate research

Read More

Continuous integrate-and-fire (CIF) based models, which use a soft and monotonic alignment mechanism, have been well applied in non-autoregressive (NAR) speech recognition and achieved competitive performance compared with other NAR methods. However, such an alignment learning strategy may also result in inaccurate acoustic boundary estimation and deceleration in convergence speed. To eliminate these drawbacks and improve performance further, we incorporate an additional connectionist temporal classification (CTC) based alignment loss and a contextual decoder into the CIF-based NAR model. Specifically, we use the CTC spike information to guide the leaning of acoustic boundary and adopt a new contextual decoder to capture the linguistic dependencies within a sentence in the conventional CIF model. Besides, a recently proposed Conformer architecture is also employed to model both local and global acoustic dependencies. Experiments on the open-source Mandarin corpora AISHELL-1 show that the proposed method achieves a comparable character error rate (CER) of 4.9% with only 1/24 latency compared with a state-of-the-art autoregressive (AR) Conformer model.
111 - Xian Shi , Pan Zhou , Wei Chen 2021
Neural architecture search (NAS) has been successfully applied to tasks like image classification and language modeling for finding efficient high-performance network architectures. In ASR field especially end-to-end ASR, the related research is still in its infancy. In this work, we focus on applying NAS on the most popular manually designed model: Conformer, and then propose an efficient ASR model searching method that benefits from the natural advantage of differentiable architecture search (Darts) in reducing computational overheads. We fuse Darts mutator and Conformer blocks to form a complete search space, within which a modified architecture called Darts-Conformer cell is found automatically. The entire searching process on AISHELL-1 dataset costs only 0.7 GPU days. Replacing the Conformer encoder by stacking searched cell, we get an end-to-end ASR model (named as Darts-Conformner) that outperforms the Conformer baseline by 4.7% on the open-source AISHELL-1 dataset. Besides, we verify the transferability of the architecture searched on a small dataset to a larger 2k-hour dataset. To the best of our knowledge, this is the first successful attempt to apply gradient-based architecture search in the attention-based encoder-decoder ASR model.
Despite the significant progress in end-to-end (E2E) automatic speech recognition (ASR), E2E ASR for low resourced code-switching (CS) speech has not been well studied. In this work, we describe an E2E ASR pipeline for the recognition of CS speech in which a low-resourced language is mixed with a high resourced language. Low-resourcedness in acoustic data hinders the performance of E2E ASR systems more severely than the conventional ASR systems.~To mitigate this problem in the transcription of archives with code-switching Frisian-Dutch speech, we integrate a designated decoding scheme and perform rescoring with neural network-based language models to enable better utilization of the available textual resources. We first incorporate a multi-graph decoding approach which creates parallel search spaces for each monolingual and mixed recognition tasks to maximize the utilization of the textual resources from each language. Further, language model rescoring is performed using a recurrent neural network pre-trained with cross-lingual embedding and further adapted with the limited amount of in-domain CS text. The ASR experiments demonstrate the effectiveness of the described techniques in improving the recognition performance of an E2E CS ASR system in a low-resourced scenario.
The attention-based end-to-end (E2E) automatic speech recognition (ASR) architecture allows for joint optimization of acoustic and language models within a single network. However, in a vanilla E2E ASR architecture, the decoder sub-network (subnet), which incorporates the role of the language model (LM), is conditioned on the encoder output. This means that the acoustic encoder and the language model are entangled that doesnt allow language model to be trained separately from external text data. To address this problem, in this work, we propose a new architecture that separates the decoder subnet from the encoder output. In this way, the decoupled subnet becomes an independently trainable LM subnet, which can easily be updated using the external text data. We study two strategies for updating the new architecture. Experimental results show that, 1) the independent LM architecture benefits from external text data, achieving 9.3% and 22.8% relative character and word error rate reduction on Mandarin HKUST and English NSC datasets respectively; 2)the proposed architecture works well with external LM and can be generalized to different amount of labelled data.
Discriminative models for source separation have recently been shown to produce impressive results. However, when operating on sources outside of the training set, these models can not perform as well and are cumbersome to update. Classical methods like Non-negative Matrix Factorization (NMF) provide modular approaches to source separation that can be easily updated to adapt to new mixture scenarios. In this paper, we generalize NMF to develop end-to-end non-negative auto-encoders and demonstrate how they can be used for source separation. Our experiments indicate that these models deliver comparable separation performance to discriminative approaches, while retaining the modularity of NMF and the modeling flexibility of neural networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا