We study how to introduce locality mechanisms into vision transformers. The transformer network originates from machine translation and is particularly good at modelling long-range dependencies within a long sequence. Although the global interaction between the token embeddings could be well modelled by the self-attention mechanism of transformers, what is lacking a locality mechanism for information exchange within a local region. Yet, locality is essential for images since it pertains to structures like lines, edges, shapes, and even objects. We add locality to vision transformers by introducing depth-wise convolution into the feed-forward network. This seemingly simple solution is inspired by the comparison between feed-forward networks and inverted residual blocks. The importance of locality mechanisms is validated in two ways: 1) A wide range of design choices (activation function, layer placement, expansion ratio) are available for incorporating locality mechanisms and all proper choices can lead to a performance gain over the baseline, and 2) The same locality mechanism is successfully applied to 4 vision transformers, which shows the generalization of the locality concept. In particular, for ImageNet2012 classification, the locality-enhanced transformers outperform the baselines DeiT-T and PVT-T by 2.6% and 3.1% with a negligible increase in the number of parameters and computational effort. Code is available at url{https://github.com/ofsoundof/LocalViT}.