Do you want to publish a course? Click here

Observing quantum-speed-limit crossover with matter wave interferometry

97   0   0.0 ( 0 )
 Added by Andrea Alberti
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in time. Two well-known quantum speed limits are the Mandelstam-Tamm (MT) and the Margolus-Levitin (ML) bounds, which relate the maximum speed of evolution to the systems energy uncertainty and mean energy, respectively. Here, we test concurrently both limits in a multi-level system by following the motion of a single atom in an optical trap using fast matter wave interferometry. Our data reveal two different regimes: one where the MT limit constrains the evolution at all times, and a second where a crossover to the ML limit is manifested at longer times. We take a geometric approach to quantify the deviation from the speed limit, measuring how much the matter waves quantum evolution deviates from the geodesic path in the Hilbert space of the multi-level system. Our results, establishing quantum speed limits beyond the simple two-level system, are important to understand the ultimate performance of quantum computing devices and related advanced quantum technologies.



rate research

Read More

A remarkable feature of quantum many-body systems is the orthogonality catastrophe which describes their extensively growing sensitivity to local perturbations and plays an important role in condensed matter physics. Here we show that the dynamics of the orthogonality catastrophe can be fully characterized by the quantum speed limit and, more specifically, that any quenched quantum many-body system whose variance in ground state energy scales with the system size exhibits the orthogonality catastrophe. Our rigorous findings are demonstrated by two paradigmatic classes of many-body systems -- the trapped Fermi gas and the long-range interacting Lipkin-Meshkov-Glick spin model.
We investigate the prospect of enhancing the phase sensitivity of atom interferometers in the Mach-Zehnder configuration with squeezed light. Ultimately, this enhancement is achieved by transferring the quantum state of squeezed light to one or more of the atomic input beams, thereby allowing operation below the standard quantum limit. We analyze in detail three specific schemes that utilize (1) single-mode squeezed optical vacuum (i.e. low frequency squeezing), (2) two-mode squeezed optical vacuum (i.e. high frequency squeezing) transferred to both atomic inputs, and (3) two-mode squeezed optical vacuum transferred to a single atomic input. Crucially, our analysis considers incomplete quantum state transfer (QST) between the optical and atomic modes, and the effects of depleting the initially-prepared atomic source. Unsurprisingly, incomplete QST degrades the sensitivity in all three schemes. We show that by measuring the transmitted photons and using information recycling [Phys. Rev. Lett. 110, 053002 (2013)], the degrading effects of incomplete QST on the sensitivity can be substantially reduced. In particular, information recycling allows scheme (2) to operate at the Heisenberg limit irrespective of the QST efficiency, even when depletion is significant. Although we concentrate on Bose-condensed atomic systems, our scheme is equally applicable to ultracold thermal vapors.
Matter-wave interferometry with solids is highly susceptible to minute fluctuations of environmental fields, including gravitational effects from distant sources. Hence, experiments require a degree of shielding that is extraordinarily challenging to achieve in realistic terrestrial or even space-based set-ups. Here, we design protocols that exploit the spatial correlations that are inherent in perturbations due to distant sources to reduce significantly their impact on the visibility of interference patterns. We show that interference patterns that are robust to such type of noise can be encoded in the joint probability distribution of two or more interferometers, provided that these are initialized in suitable states. We develop a general framework that makes use of N+1 interferometers that may differ in their masses to correct for environmental potential fields up to order N in their multipole expansion. Remarkably, our approach works for fields that fluctuate stochastically in any time scale and does not require the presence of quantum correlations among the different interferometers. Finally, we also show that the same ideas can be extended to the protection of entanglement between pairs of interferometers.
Optics and interferometry with matter waves is the art of coherently manipulating the translational motion of particles like neutrons, atoms and molecules. Coherent atom optics is an extension of techniques that were developed for manipulating emph{internal} quantum states. Applying these ideas to translational motion required the development of techniques to localize atoms and transfer population coherently between distant localities. In this view position and momentum are (continuouse) quantum mechanical degree of freedom analogous to discrete internal quantum states. In our contribution we start with an introduction into matter-wave optics in section 1, discuss coherent atom optics and atom interferometry techniques for molecular beams in section 2 and for trapped atoms in section 3. In section 4 we then describe tools and experiments that allow us to probe the evolution of quantum states of many-body systems by atom interference.
Identifying universal properties of non-equilibrium quantum states is a major challenge in modern physics. A fascinating prediction is that classical hydrodynamics emerges universally in the evolution of any interacting quantum system. Here, we experimentally probe the quantum dynamics of 51 individually controlled ions, realizing a long-range interacting spin chain. By measuring space-time resolved correlation functions in an infinite temperature state, we observe a whole family of hydrodynamic universality classes, ranging from normal diffusion to anomalous superdiffusion, that are described by Levy flights. We extract the transport coefficients of the hydrodynamic theory, reflecting the microscopic properties of the system. Our observations demonstrate the potential for engineered quantum systems to provide key insights into universal properties of non-equilibrium states of quantum matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا