Do you want to publish a course? Click here

A Low-mass Cold and Quiescent Core Population in a Massive Star Protocluster

329   0   0.0 ( 0 )
 Added by Shanghuo Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pre-stellar cores represent the initial conditions of star formation. Although these initial conditions in nearby low-mass star-forming regions have been investigated in detail, such initial conditions remain vastly unexplored for massive star-forming regions. We report the detection of a cluster of low-mass starless and pre-stellar core candidates in a massive star protocluster forming cloud, NGC6334S. With the ALMA observations at a $sim$0.02 pc spatial resolution, we identified 17 low-mass starless core candidates that do not show any evidence of protostellar activity. These candidates present small velocity dispersions, high fractional abundances of NH$_{2}$D, high NH$_{3}$ deuterium fractionations, and are completely dark in the infrared wavelengths from 3.6 up to 70~$mu$m. Turbulence is significantly dissipated and the gas kinematics are dominated by thermal motions toward these candidates. Nine out of the 17 cores are gravitationally bound, and therefore are identified as pre-stellar core candidates. The embedded cores of NGC6334S show a wide diversity in masses and evolutionary stages.



rate research

Read More

We report a massive quiescent galaxy at $z_{rm spec}=3.0922^{+0.008}_{-0.004}$ spectroscopically confirmed at a protocluster in the SSA22 field by detecting the Balmer and Ca {footnotesize II} absorption features with multi-object spectrometer for infrared exploration (MOSFIRE) on the Keck I telescope. This is the most distant quiescent galaxy confirmed in a protocluster to date. We fit the optical to mid-infrared photometry and spectrum simultaneously with spectral energy distribution (SED) models of parametric and nonparametric star formation histories (SFH). Both models fit the observed SED well and confirm that this object is a massive quiescent galaxy with the stellar mass of $log(rm M_{star}/M_{odot}) = 11.26^{+0.03}_{-0.04}$ and $11.54^{+0.03}_{-0.00}$, and star formation rate of $rm SFR/M_{odot}~yr^{-1} <0.3$ and $=0.01^{+0.03}_{-0.01}$ for parametric and nonparametric models, respectively. The SFH from the former modeling is described as an instantaneous starburst while that of the latter modeling is longer-lived but both models agree with a sudden quenching of the star formation at $sim0.6$ Gyr ago. This massive quiescent galaxy is confirmed in an extremely dense group of galaxies predicted as a progenitor of a brightest cluster galaxy formed via multiple mergers in cosmological numerical simulations. We newly find three plausible [O III]$lambda$5007 emitters at $3.0791leq z_{rm spec}leq3.0833$ happened to be detected around the target. Two of them just between the target and its nearest massive galaxy are possible evidence of their interactions. They suggest the future strong size and stellar mass evolution of this massive quiescent galaxy via mergers.
We present 1.05 mm ALMA observations of the deeply embedded high-mass protocluster G11.92-0.61, designed to search for low-mass cores within the accretion reservoir of the massive protostars. Our ALMA mosaic, which covers an extent of ~0.7 pc at sub-arcsecond (~1400 au) resolution, reveals a rich population of 16 new millimetre continuum sources surrounding the three previously-known millimetre cores. Most of the new sources are located in the outer reaches of the accretion reservoir: the median projected separation from the central, massive (proto)star MM1 is ~0.17 pc. The derived physical properties of the new millimetre continuum sources are consistent with those of low-mass prestellar and protostellar cores in nearby star-forming regions: the median mass, radius, and density of the new sources are 1.3 Msun, 1600 au, and n(H2)~10^7 cm^-3. At least three of the low-mass cores in G11.92-0.61 drive molecular outflows, traced by high-velocity 12CO(3-2) (observed with the SMA) and/or by H2CO and CH3OH emission (observed with ALMA). This finding, combined with the known outflow/accretion activity of MM1, indicates that high- and low-mass stars are forming (accreting) simultaneously within this protocluster. Our ALMA results are consistent with the predictions of competitive-accretion-type models in which high-mass stars form along with their surrounding clusters.
Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]), which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured is at z~1.4, with [Mg/Fe]=0.45(+0.05,-0.19). A slightly earlier epoch (z~1.6) was probed by stacking the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] of 0.31+/-0.12. However, the relatively low S/N of the data and the use of index analysis techniques for both studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z>2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at z=2.1. With [Mg/Fe]=0.59+/-0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1-0.5 Gyr - characteristics that are similar to population II stars in the Milky Way. With an average past SFR of 600-3000 Msol/yr, this galaxy was among the most vigorous star-forming galaxies in the Universe.
We study the core mass function (CMF) of the massive protocluster G286.21+0.17 with the Atacama Large Millimeter/submillimeter Array via 1.3~mm continuum emission at a resolution of 1.0arcsec (2500~au). We have mapped a field of 5.3arcmin$times$5.3arcmin centered on the protocluster clump. We measure the CMF in the central region, exploring various core detection algorithms, which give source numbers ranging from 60 to 125, depending on parameter selection. We estimate completeness corrections due to imperfect flux recovery and core identification via artificial core insertion experiments. For masses $Mgtrsim1:M_odot$, the fiducial dendrogram-identified CMF can be fit with a power law of the form ${rm{d}}N/{rm{d}}{rm{log}}Mpropto{M}^{-alpha}$ with $alpha simeq1.24pm0.17$, slightly shallower than, but still consistent with, the index of the Salpeter stellar initial mass function of 1.35. Clumpfind-identified CMFs are significantly shallower with $alphasimeq0.64pm0.13$. While raw CMFs show a peak near $1:M_odot$, completeness-corrected CMFs are consistent with a single power law extending down to $sim 0.5:M_odot$, with only a tentative indication of a shallowing of the slope around $sim1:M_odot$. We discuss the implications of these results for star and star cluster formation theories.
131 - N. Peretto , A. Rigby , R. Adam 2019
Understanding where and when the mass of stars is determined is one of the fundamental, mostly unsolved, questions in astronomy. Here, we present the first results of GASTON, the Galactic Star Formation with NIKA2 large programme on the IRAM 30m telescope, that aims to identify new populations of low-brightness sources to tackle the question of stellar mass determination across all masses. In this paper, we focus on the high-mass star formation part of the project, for which we map a $sim2$ deg$^2$ region of the Galactic plane around $l=24^circ$ in both 1.2 mm and 2.0 mm continuum. Half-way through the project, we reach a sensitivity of 3.7 mJy/beam at 1.2mm. Even though larger than our target sensitivity of 2 mJy, the current sensitivity already allows the identification of a new population of cold, compact sources that remained undetected in any (sub-)mm Galactic plane survey so far. In fact, about 25% of the $sim 1600$ compact sources identified in the 1.2 mm GASTON image are new detections. We present a preliminary analysis of the physical properties of the GASTON sources as a function of their evolutionary stage, arguing for a potential evolution of the mass distribution of these sources with time.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا