Do you want to publish a course? Click here

Neural Camera Simulators

204   0   0.0 ( 0 )
 Added by Zifan Shi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a controllable camera simulator based on deep neural networks to synthesize raw image data under different camera settings, including exposure time, ISO, and aperture. The proposed simulator includes an exposure module that utilizes the principle of modern lens designs for correcting the luminance level. It also contains a noise module using the noise level function and an aperture module with adaptive attention to simulate the side effects on noise and defocus blur. To facilitate the learning of a simulator model, we collect a dataset of the 10,000 raw images of 450 scenes with different exposure settings. Quantitative experiments and qualitative comparisons show that our approach outperforms relevant baselines in raw data synthesize on multiple cameras. Furthermore, the camera simulator enables various applications, including large-aperture enhancement, HDR, auto exposure, and data augmentation for training local feature detectors. Our work represents the first attempt to simulate a camera sensors behavior leveraging both the advantage of traditional raw sensor features and the power of data-driven deep learning.



rate research

Read More

Low-power computer vision on embedded devices has many applications. This paper describes a low-power technique for the object re-identification (reID) problem: matching a query image against a gallery of previously seen images. State-of-the-art techniques rely on large, computationally-intensive Deep Neural Networks (DNNs). We propose a novel hierarchical DNN architecture that uses attribute labels in the training dataset to perform efficient object reID. At each node in the hierarchy, a small DNN identifies a different attribute of the query image. The small DNN at each leaf node is specialized to re-identify a subset of the gallery: only the images with the attributes identified along the path from the root to a leaf. Thus, a query image is re-identified accurately after processing with a few small DNNs. We compare our method with state-of-the-art object reID techniques. With a 4% loss in accuracy, our approach realizes significant resource savings: 74% less memory, 72% fewer operations, and 67% lower query latency, yielding 65% less energy consumption.
Modeling imaging sensor noise is a fundamental problem for image processing and computer vision applications. While most previous works adopt statistical noise models, real-world noise is far more complicated and beyond what these models can describe. To tackle this issue, we propose a data-driven approach, where a generative noise model is learned from real-world noise. The proposed noise model is camera-aware, that is, different noise characteristics of different camera sensors can be learned simultaneously, and a single learned noise model can generate different noise for different camera sensors. Experimental results show that our method quantitatively and qualitatively outperforms existing statistical noise models and learning-based methods.
We present a feature-free photogrammetric technique that enables quantitative 3D mesoscopic (mm-scale height variation) imaging with tens-of-micron accuracy from sequences of images acquired by a smartphone at close range (several cm) under freehand motion without additional hardware. Our end-to-end, pixel-intensity-based approach jointly registers and stitches all the images by estimating a coaligned height map, which acts as a pixel-wise radial deformation field that orthorectifies each camera image to allow homographic registration. The height maps themselves are reparameterized as the output of an untrained encoder-decoder convolutional neural network (CNN) with the raw camera images as the input, which effectively removes many reconstruction artifacts. Our method also jointly estimates both the cameras dynamic 6D pose and its distortion using a nonparametric model, the latter of which is especially important in mesoscopic applications when using cameras not designed for imaging at short working distances, such as smartphone cameras. We also propose strategies for reducing computation time and memory, applicable to other multi-frame registration problems. Finally, we demonstrate our method using sequences of multi-megapixel images captured by an unstabilized smartphone on a variety of samples (e.g., painting brushstrokes, circuit board, seeds).
Recent learning-based approaches have achieved impressive results in the field of single-shot camera localization. However, how best to fuse multiple modalities (e.g., image and depth) and to deal with degraded or missing input are less well studied. In particular, we note that previous approaches towards deep fusion do not perform significantly better than models employing a single modality. We conjecture that this is because of the naive approaches to feature space fusion through summation or concatenation which do not take into account the different strengths of each modality. To address this, we propose an end-to-end framework, termed VMLoc, to fuse different sensor inputs into a common latent space through a variational Product-of-Experts (PoE) followed by attention-based fusion. Unlike previous multimodal variational works directly adapting the objective function of vanilla variational auto-encoder, we show how camera localization can be accurately estimated through an unbiased objective function based on importance weighting. Our model is extensively evaluated on RGB-D datasets and the results prove the efficacy of our model. The source code is available at https://github.com/Zalex97/VMLoc.
There has been significant amount of research work on human activity classification relying either on Inertial Measurement Unit (IMU) data or data from static cameras providing a third-person view. Using only IMU data limits the variety and complexity of the activities that can be detected. For instance, the sitting activity can be detected by IMU data, but it cannot be determined whether the subject has sat on a chair or a sofa, or where the subject is. To perform fine-grained activity classification from egocentric videos, and to distinguish between activities that cannot be differentiated by only IMU data, we present an autonomous and robust method using data from both ego-vision cameras and IMUs. In contrast to convolutional neural network-based approaches, we propose to employ capsule networks to obtain features from egocentric video data. Moreover, Convolutional Long Short Term Memory framework is employed both on egocentric videos and IMU data to capture temporal aspect of actions. We also propose a genetic algorithm-based approach to autonomously and systematically set various network parameters, rather than using manual settings. Experiments have been performed to perform 9- and 26-label activity classification, and the proposed method, using autonomously set network parameters, has provided very promising results, achieving overall accuracies of 86.6% and 77.2%, respectively. The proposed approach combining both modalities also provides increased accuracy compared to using only egovision data and only IMU data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا