Do you want to publish a course? Click here

An example of a non-associative Moufang loop of point classes on a cubic surface

48   0   0.0 ( 0 )
 Added by Dimitri Kanevsky
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $k=mathbb{Q}_3(theta)$, $theta^3=1$ be a quadratic extension of 3-adic numbers. Let $V$ be a cubic surface defined over a field $k$ by the equation $T_0^3+T_1^3+T_2^3+theta T_0^3=0$ and let $V(k)$ be a set of rational points on $V$ defined over $k$. We show that a relation on $V(k)$ modulo a prime $(1-theta)^3$ (in a ring of integers of $k$) defines an admissible relation on a set of rational points of $V$ over $k$ and a commutative Moufang loop associated with classes of this admissible equivalence on $V(k)$ is non-associative. This answers a long standing problem that was formulated by Yu. I. Manin more than 50 years ago about existence of non-abelian quasi-groups associated with some cubic surface over some field.



rate research

Read More

Manins conjecture predicts the asymptotic behavior of the number of rational points of bounded height on algebraic varieties. For toric varieties, it was proved by Batyrev and Tschinkel via height zeta functions and an application of the Poisson formula. An alternative approach to Manins conjecture via universal torsors was used so far mainly over the field Q of rational numbers. In this note, we give a proof of Manins conjecture over the Gaussian rational numbers Q(i) and over other imaginary quadratic number fields with class number 1 for the singular toric cubic surface defined by t^3=xyz.
We prove Manins conjecture over imaginary quadratic number fields for a cubic surface with a singularity of type E_6.
Let F be the cubic field of discriminant -23 and O its ring of integers. Let Gamma be the arithmetic group GL_2 (O), and for any ideal n subset O let Gamma_0 (n) be the congruence subgroup of level n. In a previous paper, two of us (PG and DY) computed the cohomology of various Gamma_0 (n), along with the action of the Hecke operators. The goal of that paper was to test the modularity of elliptic curves over F. In the present paper, we complement and extend this prior work in two ways. First, we tabulate more elliptic curves than were found in our prior work by using various heuristics (old and new cohomology classes, dimensions of Eisenstein subspaces) to predict the existence of elliptic curves of various conductors, and then by using more sophisticated search techniques (for instance, torsion subgroups, twisting, and the Cremona-Lingham algorithm) to find them. We then compute further invariants of these curves, such as their rank and representatives of all isogeny classes. Our enumeration includes conjecturally the first elliptic curves of ranks 1 and 2 over this field, which occur at levels of norm 719 and 9173 respectively.
We exhibit a probabilistic algorithm which computes a rational point of an absolutely irreducible variety over a finite field defined by a reduced regular sequence. Its time--space complexity is roughly quadratic in the logarithm of the cardinality of the field and a geometric invariant of the input system (called its degree), which is always bounded by the Bezout number of the system. Our algorithm works for fields of any characteristic, but requires the cardinality of the field to be greater than a quantity which is roughly the fourth power of the degree of the input variety.
We show that if a rational map is constant on each isomorphism class of unpolarized abelian varieties of a given dimension, then it is a constant map. Our results are motivated by and shed light on a proposed construction of a cryptographic protocol for multiparty non-interactive key exchange.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا