Group Convolutional Neural Networks Improve Quantum State Accuracy


Abstract in English

Neural networks are a promising tool for simulating quantum many body systems. Recently, it has been shown that neural network-based models describe quantum many body systems more accurately when they are constrained to have the correct symmetry properties. In this paper, we show how to create maximally expressive models for quantum states with specific symmetry properties by drawing on literature from the machine learning community. We implement group equivariant convolutional networks (G-CNN) cite{cohen2016group}, and demonstrate that performance improvements can be achieved without increasing memory use. We show that G-CNNs achieve very good accuracy for Heisenberg quantum spin models in both ordered and spin liquid regimes, and improve the ground state accuracy on the triangular lattice over other variational Monte-Carlo methods.

Download