The Nuclear Region of NGC1365: Star Formation, Negative Feedback, and Outflow Structure


Abstract in English

High-resolution observations of ionized and molecular gas in the nuclear regions of galaxies are indispensable for delineating the interplay of star formation, gaseous inflows, stellar radiation, and feedback processes. Combining our new ALMA band 3 mapping and archival VLT/MUSE data, we present a spatially resolved analysis of molecular and ionized gas in the central 5.4 Kpc region of NGC 1365. We find the star formation rate/efficiency (SFR/SFE) in the inner circumnuclear ring is about 0.4/1.1 dex higher than in the outer regions. At a linear resolution of 180 pc, we obtain a super-linear Kennicutt-Schmidt law, demonstrating a steeper slope (1.96$pm$0.14) than previous results presumably based on lower-resolution observations. Compared to the northeastern counterpart, the southwestern dust lane shows lower SFE, but denser molecular gas, and larger virial parameters. This is consistent with an interpretation of negative feedback from AGN and/or starburst, in the sense that the radiation/winds can heat and interact with the molecular gas even in relatively dense regions. After subtracting the circular motion component of the molecular gas and the stellar rotation, we detect two prominent non-circular motion components of molecular and ionized hydrogen gas, reaching a line-of-sight velocity of up to 100 km/s. We conclude that the winds or shocked gas from the central AGN may expel the low-density molecular gas and diffuse ionized gas on the surface of the rotating disk.

Download