Do you want to publish a course? Click here

Edge: Enriching Knowledge Graph Embeddings with External Text

134   0   0.0 ( 0 )
 Added by Saed Rezayi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Knowledge graphs suffer from sparsity which degrades the quality of representations generated by various methods. While there is an abundance of textual information throughout the web and many existing knowledge bases, aligning information across these diverse data sources remains a challenge in the literature. Previous work has partially addressed this issue by enriching knowledge graph entities based on hard co-occurrence of words present in the entities of the knowledge graphs and external text, while we achieve soft augmentation by proposing a knowledge graph enrichment and embedding framework named Edge. Given an original knowledge graph, we first generate a rich but noisy augmented graph using external texts in semantic and structural level. To distill the relevant knowledge and suppress the introduced noise, we design a graph alignment term in a shared embedding space between the original graph and augmented graph. To enhance the embedding learning on the augmented graph, we further regularize the locality relationship of target entity based on negative sampling. Experimental results on four benchmark datasets demonstrate the robustness and effectiveness of Edge in link prediction and node classification.



rate research

Read More

In this paper, we focus on the classification of books using short descriptive texts (cover blurbs) and additional metadata. Building upon BERT, a deep neural language model, we demonstrate how to combine text representations with metadata and knowledge graph embeddings, which encode author information. Compared to the standard BERT approach we achieve considerably better results for the classification task. For a more coarse-grained classification using eight labels we achieve an F1- score of 87.20, while a detailed classification using 343 labels yields an F1-score of 64.70. We make the source code and trained models of our experiments publicly available
154 - Zequn Sun , Muhao Chen , Wei Hu 2020
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.
Traditionally, many text-mining tasks treat individual word-tokens as the finest meaningful semantic granularity. However, in many languages and specialized corpora, words are composed by concatenating semantically meaningful subword structures. Word-level analysis cannot leverage the semantic information present in such subword structures. With regard to word embedding techniques, this leads to not only poor embeddings for infrequent words in long-tailed text corpora but also weak capabilities for handling out-of-vocabulary words. In this paper we propose MorphMine for unsupervised morpheme segmentation. MorphMine applies a parsimony criterion to hierarchically segment words into the fewest number of morphemes at each level of the hierarchy. This leads to longer shared morphemes at each level of segmentation. Experiments show that MorphMine segments words in a variety of languages into human-verified morphemes. Additionally, we experimentally demonstrate that utilizing MorphMine morphemes to enrich word embeddings consistently improves embedding quality on a variety of of embedding evaluations and a downstream language modeling task.
When the meaning of a phrase cannot be inferred from the individual meanings of its words (e.g., hot dog), that phrase is said to be non-compositional. Automatic compositionality detection in multi-word phrases is critical in any application of semantic processing, such as search engines; failing to detect non-compositional phrases can hurt system effectiveness notably. Existing research treats phrases as either compositional or non-compositional in a deterministic manner. In this paper, we operationalize the viewpoint that compositionality is contextual rather than deterministic, i.e., that whether a phrase is compositional or non-compositional depends on its context. For example, the phrase `green card is compositional when referring to a green colored card, whereas it is non-compositional when meaning permanent residence authorization. We address the challenge of detecting this type of contextual compositionality as follows: given a multi-word phrase, we enrich the word embedding representing its semantics with evidence about its global context (terms it often collocates with) as well as its local context (narratives where that phrase is used, which we call usage scenarios). We further extend this representation with information extracted from external knowledge bases. The resulting representation incorporates both localized context and more general usage of the phrase and allows to detect its compositionality in a non-deterministic and contextual way. Empirical evaluation of our model on a dataset of phrase compositionality, manually collected by crowdsourcing contextual compositionality assessments, shows that our model outperforms state-of-the-art baselines notably on detecting phrase compositionality.
Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا