Do you want to publish a course? Click here

Auto-weighted Multi-view Feature Selection with Graph Optimization

71   0   0.0 ( 0 )
 Added by Xu Jiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we focus on the unsupervised multi-view feature selection which tries to handle high dimensional data in the field of multi-view learning. Although some graph-based methods have achieved satisfactory performance, they ignore the underlying data structure across different views. Besides, their pre-defined laplacian graphs are sensitive to the noises in the original data space, and fail to get the optimal neighbor assignment. To address the above problems, we propose a novel unsupervised multi-view feature selection model based on graph learning, and the contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned. Therefore, the proposed model can reveal the data relationship from the feature subset. (2) a reasonable rank constraint is added to optimize the similarity matrix to obtain more accurate information; (3) an auto-weighted framework is presented to assign view weights adaptively, and an effective alternative iterative algorithm is proposed to optimize the problem. Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.



rate research

Read More

125 - Zezhi Shao , Yongjun Xu , Wei Wei 2021
Graph neural networks for heterogeneous graph embedding is to project nodes into a low-dimensional space by exploring the heterogeneity and semantics of the heterogeneous graph. However, on the one hand, most of existing heterogeneous graph embedding methods either insufficiently model the local structure under specific semantic, or neglect the heterogeneity when aggregating information from it. On the other hand, representations from multiple semantics are not comprehensively integrated to obtain versatile node embeddings. To address the problem, we propose a Heterogeneous Graph Neural Network with Multi-View Representation Learning (named MV-HetGNN) for heterogeneous graph embedding by introducing the idea of multi-view representation learning. The proposed model consists of node feature transformation, view-specific ego graph encoding and auto multi-view fusion to thoroughly learn complex structural and semantic information for generating comprehensive node representations. Extensive experiments on three real-world heterogeneous graph datasets show that the proposed MV-HetGNN model consistently outperforms all the state-of-the-art GNN baselines in various downstream tasks, e.g., node classification, node clustering, and link prediction.
Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking are demonstrated on the Netflix Prize collaborative filtering dataset.
Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data points. In this work, we propose a scalable graph learning framework, seeking to address the above three challenges simultaneously. Specifically, it is based on the ideas of anchor points and bipartite graph. Rather than building a $ntimes n$ graph, where $n$ is the number of samples, we construct a bipartite graph to depict the relationship between samples and anchor points. Meanwhile, a connectivity constraint is employed to ensure that the connected components indicate clusters directly. We further establish the connection between our method and the K-means clustering. Moreover, a model to process multi-view data is also proposed, which is linear scaled with respect to $n$. Extensive experiments demonstrate the efficiency and effectiveness of our approach with respect to many state-of-the-art clustering methods.
Bayesian optimization (BO) is a powerful approach for optimizing black-box, expensive-to-evaluate functions. To enable a flexible trade-off between the cost and accuracy, many applications allow the function to be evaluated at different fidelities. In order to reduce the optimization cost while maximizing the benefit-cost ratio, in this paper, we propose Batch Multi-fidelity Bayesian Optimization with Deep Auto-Regressive Networks (BMBO-DARN). We use a set of Bayesian neural networks to construct a fully auto-regressive model, which is expressive enough to capture strong yet complex relationships across all the fidelities, so as to improve the surrogate learning and optimization performance. Furthermore, to enhance the quality and diversity of queries, we develop a simple yet efficient batch querying method, without any combinatorial search over the fidelities. We propose a batch acquisition function based on Max-value Entropy Search (MES) principle, which penalizes highly correlated queries and encourages diversity. We use posterior samples and moment matching to fulfill efficient computation of the acquisition function and conduct alternating optimization over every fidelity-input pair, which guarantees an improvement at each step. We demonstrate the advantage of our approach on four real-world hyperparameter optimization applications.
Feature selection is a prevalent data preprocessing paradigm for various learning tasks. Due to the expensive cost of acquiring supervision information, unsupervised feature selection sparks great interests recently. However, existing unsupervised feature selection algorithms do not have fairness considerations and suffer from a high risk of amplifying discrimination by selecting features that are over associated with protected attributes such as gender, race, and ethnicity. In this paper, we make an initial investigation of the fairness-aware unsupervised feature selection problem and develop a principled framework, which leverages kernel alignment to find a subset of high-quality features that can best preserve the information in the original feature space while being minimally correlated with protected attributes. Specifically, different from the mainstream in-processing debiasing methods, our proposed framework can be regarded as a model-agnostic debiasing strategy that eliminates biases and discrimination before downstream learning algorithms are involved. Experimental results on multiple real-world datasets demonstrate that our framework achieves a good trade-off between utility maximization and fairness promotion.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا