A Class Of Curvature Flows Expanded By Support Function And Curvature Function In The Euclidean Space And Hyperbolic Space


Abstract in English

In this paper, we first consider a class of expanding flows of closed, smooth, star-shaped hypersurface in Euclidean space $mathbb{R}^{n+1}$ with speed $u^alpha f^{-beta}$, where $u$ is the support function of the hypersurface, $f$ is a smooth, symmetric, homogenous of degree one, positive function of the principal curvatures of the hypersurface on a convex cone. For $alpha le 0<betale 1-alpha$, we prove that the flow has a unique smooth solution for all time, and converges smoothly after normalization, to a sphere centered at the origin. In particular, the results of Gerhardt cite{GC3} and Urbas cite{UJ2} can be recovered by putting $alpha=0$ and $beta=1$ in our first result. If the initial hypersurface is convex, this is our previous work cite{DL}. If $alpha le 0<beta< 1-alpha$ and the ambient space is hyperbolic space $mathbb{H}^{n+1}$, we prove that the flow $frac{partial X}{partial t}=(u^alpha f^{-beta}-eta u) u$ has a longtime existence and smooth convergence to a coordinate slice. The flow in $mathbb{H}^{n+1}$ is equivalent (up to an isomorphism) to a re-parametrization of the original flow in $mathbb{R}^{n+1}$ case. Finally, we find a family of monotone quantities along the flows in $mathbb{R}^{n+1}$. As applications, we give a new proof of a family of inequalities involving the weighted integral of $k$th elementary symmetric function for $k$-convex, star-shaped hypersurfaces, which is an extension of the quermassintegral inequalities in cite{GL2}.

Download