The nonanalyticity and the sign problem in the Z3-symmetric heavy quark model at low temperature are studied phenomenologically. For the free heavy quarks, the nonanalyticity is analyzed in the relation to the zeros of the grand canonical partition function. The Z3-symmetric effective Polyakov-line model (EPLM) in strong coupling limit is also considered as an phenomenological model of Z3-symmetric QCD with large quark mass at low temperature. We examine how the Z3-symmetric EPLM approaches to the original one in the zero-temperature limit. The effects of the Z3-symmetry affect the structure of zeros of the microscopic probability density function at the nonanalytic point. The average value of the Polyakov line can detect the structure, while the other thermodynamic quantities are not sensible to the structure in the zero-temperature limit. The effect of the imaginary quark chemical potential is also discussed. The imaginary part of the quark number density is very sensitive to the symmetry structure at the nonanalytical point. For a particular value of the imaginary quark number chemical potential, large quark number may be induced in the vicinity of the nonanalytical point.
As an effective model corresponding to $Z_3$-symmetric QCD ($Z_3$-QCD), we construct a $Z_3$-symmetric effective Polyakov-line model ($Z_3$-EPLM) by using the logarithmic fermion effective action. Since $Z_3$-QCD tends to QCD in the zero temperature limit, $Z_3$-EPLM also agrees with the ordinary effective Polyakov-line model (EPLM) there; note that ordinary EPLM does not possess $Z_3$ symmetry. Our main purpose is to discuss a sign problem appearing in $Z_3$-EPLM. The action of $Z_3$-EPLM is real, when the Polyakov line is not only real but also its $Z_3$ images. This suggests that the sign problem becomes milder in $Z_3$-EPLM than in EPLM. In order to confirm this suggestion, we do lattice simulations for both EPLM and $Z_3$-EPLM by using the reweighting method with the phase quenched approximation. In the low-temperature region, the sign problem is milder in $Z_3$-EPLM than in EPLM. We also propose a new reweighting method. This makes the sign problem very weak in $Z_3$-EPLM.
We apply the path optimization method to a QCD effective model with the Polyakov loop at finite density to circumvent the model sign problem. The Polyakov-loop extended Nambu--Jona-Lasinio model is employed as the typical QCD effective model and then the hybrid Monte-Carlo method is used to perform the path integration. To control the sign problem, the path optimization method is used with complexification of temporal gluon fields to modify the integral path in the complex space. We show that the average phase factor is well improved on the modified integral-path compared with that on the original one. This indicates that the complexification of temporal gluon fields may be enough to control the sign problem of QCD in the path optimization method.
We investigate QCD at large mu/T by using Z_3-symmetric SU(3) gauge theory, where mu is the quark-number chemical potential and T is temperature. We impose the flavor-dependent twist boundary condition on quarks in QCD. This QCD-like theory has the twist angle theta as a parameter, and agrees with QCD when theta=0 and becomes symmetric when theta=2pi/3. For both QCD and the Z_3-symmetric SU(3) gauge theory, the phase diagram is drawn in mu--T plane with the Polyakov-loop extended Nambu--Jona-Lasinio model. In the Z_3-symmetric SU(3) gauge theory, the Polyakov loop varphi is zero in the confined phase appearing at T lsim 200 MeV. The perfectly confined phase never coexists with the color superconducting (CSC) phase, since finite diquark condensate in the CSC phase breaks Z_3 symmetry and then makes varphi finite. When mu gsim 300 MeV, the CSC phase is more stable than the perfectly confined phase at T lsim 100 MeV. Meanwhile, the chiral symmetry can be broken in the perfectly confined phase, since the chiral condensate is Z_3 invariant. Consequently, the perfectly confined phase is divided into the perfectly confined phase without chiral symmetry restoration in a region of mu lsim 300 MeV and T lsim 200 MeV and the perfectly confined phase with chiral symmetry restoration in a region of mu gsim 300 MeV and 100 lsim T lsim 200 MeV. The basic phase structure of Z_3-symmetric QCD-like theory remains in QCD. We show that in the perfectly confined phase the sign problem becomes less serious because of varphi=0, using the heavy quark theory. We discuss a lattice QCD framework to evaluate observables at theta=0 from those at theta=2pi/3.
We propose a practical way of circumventing the sign problem in lattice QCD simulations with a theta-vacuum term. This method is the reweighting method for the QCD Lagrangian after the chiral transformation. In the Lagrangian, the P-odd mass term as a cause of the sign problem is minimized. Additionally, we investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-vacuum effects make the chiral transition sharper. We finally investigate theta dependence of the transition temperature and compare with the result of the pure gauge lattice simulation with imaginary theta parameter.
We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the Functional Renormalization Group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.
Hiroaki Kouno
,Kouji Kashiwa
,Takehiro Hirakida
.
(2021)
.
"Nonanalyticity, sign problem and Polyakov line in Z3-symmetric heavy quark model at low temperature: Phenomenological model analyses"
.
Hiroaki Kouno
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا