Do you want to publish a course? Click here

MPTP: Motion-Planning-aware Task Planning for Navigation in Belief Space

127   0   0.0 ( 0 )
 Added by Antony Thomas
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environments. Of late, TMP for manipulation has attracted significant interest resulting in a proliferation of different approaches. In contrast, TMP for navigation has received considerably less attention. Autonomous robots operating in real-world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. In knowledge-intensive domains, on the one hand, a robot has to reason at the highest-level, for example, the objects to procure, the regions to navigate to in order to acquire them; on the other hand, the feasibility of the respective navigation tasks have to be checked at the execution level. This presents a need for motion-planning-aware task planners. In this paper, we discuss a probabilistically complete approach that leverages this task-motion interaction for navigating in large knowledge-intensive domains, returning a plan that is optimal at the task-level. The framework is intended for motion planning under motion and sensing uncertainty, which is formally known as belief space planning. The underlying methodology is validated in simulation, in an office environment and its scalability is tested in the larger Willow Garage world. A reasonable comparison with a work that is closest to our approach is also provided. We also demonstrate the adaptability of our approach by considering a building floor navigation domain. Finally, we also discuss the limitations of our approach and put forward suggestions for improvements and future work.



rate research

Read More

We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environment. Autonomous robots operating in real world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. In knowledge intensive domains, on the one hand, a robot has to reason at the highest-level, for example the regions to navigate to; on the other hand, the feasibility of the respective navigation tasks have to be checked at the execution level. This presents a need for motion-planning-aware task planners. We discuss a probabilistically complete approach that leverages this task-motion interaction for navigating in indoor domains, returning a plan that is optimal at the task-level. Furthermore, our framework is intended for motion planning under motion and sensing uncertainty, which is formally known as belief space planning. The underlying methodology is validated with a simulated office environment in Gazebo. In addition, we discuss the limitations and provide suggestions for improvements and future work.
Autonomous robots operating in large knowledgeintensive domains require planning in the discrete (task) space and the continuous (motion) space. In knowledge-intensive domains, on the one hand, robots have to reason at the highestlevel, for example the regions to navigate to or objects to be picked up and their properties; on the other hand, the feasibility of the respective navigation tasks have to be checked at the controller execution level. Moreover, employing multiple robots offer enhanced performance capabilities over a single robot performing the same task. To this end, we present an integrated multi-robot task-motion planning framework for navigation in knowledge-intensive domains. In particular, we consider a distributed multi-robot setting incorporating mutual observations between the robots. The framework is intended for motion planning under motion and sensing uncertainty, which is formally known as belief space planning. The underlying methodology and its limitations are discussed, providing suggestions for improvements and future work. We validate key aspects of our approach in simulation.
We develop a belief space planning (BSP) approach that advances the state of the art by incorporating reasoning about data association (DA) within planning, while considering additional sources of uncertainty. Existing BSP approaches typically assume data association is given and perfect, an assumption that can be harder to justify while operating, in the presence of localization uncertainty, in ambiguous and perceptually aliased environments. In contrast, our data association aware belief space planning (DA-BSP) approach explicitly reasons about DA within belief evolution, and as such can better accommodate these challenging real world scenarios. In particular, we show that due to perceptual aliasing, the posterior belief becomes a mixture of probability distribution functions, and design cost functions that measure the expected level of ambiguity and posterior uncertainty. Using these and standard costs (e.g.~control penalty, distance to goal) within the objective function, yields a general framework that reliably represents action impact, and in particular, capable of active disambiguation. Our approach is thus applicable to robust active perception and autonomous navigation in perceptually aliased environments. We demonstrate key aspects in basic and realistic simulations.
Deciding whats next? is a fundamental problem in robotics and Artificial Intelligence. Under belief space planning (BSP), in a partially observable setting, it involves calculating the expected accumulated belief-dependent reward, where the expectation is with respect to all future measurements. Since solving this general un-approximated problem quickly becomes intractable, state of the art approaches turn to approximations while still calculating planning sessions from scratch. In this work we propose a novel paradigm, Incremental BSP (iX-BSP), based on the key insight that calculations across planning sessions are similar in nature and can be appropriately re-used. We calculate the expectation incrementally by utilizing Multiple Importance Sampling techniques for selective re-sampling and re-use of measurement from previous planning sessions. The formulation of our approach considers general distributions and accounts for data association aspects. We demonstrate how iX-BSP could benefit existing approximations of the general problem, introducing iML-BSP, which re-uses calculations across planning sessions under the common Maximum Likelihood assumption. We evaluate both methods and demonstrate a substantial reduction in computation time while statistically preserving accuracy. The evaluation includes both simulation and real-world experiments considering autonomous vision-based navigation and SLAM. As a further contribution, we introduce to iX-BSP the non-integral wildfire approximation, allowing one to trade accuracy for computational performance by averting from updating re-used beliefs when they are close enough. We evaluate iX-BSP under wildfire demonstrating a substantial reduction in computation time while controlling the accuracy sacrifice. We also provide analytical and empirical bounds of the effect wildfire holds over the objective value.
As robots are being increasingly used in close proximity to humans and objects, it is imperative that robots operate safely and efficiently under real-world conditions. Yet, the environment is seldom known perfectly. Noisy sensors and actuation errors compound to the errors introduced while estimating features of the environment. We present a novel approach (1) to incorporate these uncertainties for robot state estimation and (2) to compute the probability of collision pertaining to the estimated robot configurations. The expression for collision probability is obtained as an infinite series and we prove its convergence. An upper bound for the truncation error is also derived and the number of terms required is demonstrated by analyzing the convergence for different robot and obstacle configurations. We evaluate our approach using two simulation domains which use a roadmap-based strategy to synthesize trajectories that satisfy collision probability bounds.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا