No Arabic abstract
Identifying whether a word carries the same meaning or different meaning in two contexts is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisation, information retrieval and information extraction. Most of the previous work in this area rely on language-specific resources making it difficult to generalise across languages. Considering this limitation, our approach to SemEval-2021 Task 2 is based only on pretrained transformer models and does not use any language-specific processing and resources. Despite that, our best model achieves 0.90 accuracy for English-English subtask which is very compatible compared to the best result of the subtask; 0.93 accuracy. Our approach also achieves satisfactory results in other monolingual and cross-lingual language pairs as well.
This paper presents the PALI teams winning system for SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation. We fine-tune XLM-RoBERTa model to solve the task of word in context disambiguation, i.e., to determine whether the target word in the two contexts contains the same meaning or not. In the implementation, we first specifically design an input tag to emphasize the target word in the contexts. Second, we construct a new vector on the fine-tuned embeddings from XLM-RoBERTa and feed it to a fully-connected network to output the probability of whether the target word in the context has the same meaning or not. The new vector is attained by concatenating the embedding of the [CLS] token and the embeddings of the target word in the contexts. In training, we explore several tricks, such as the Ranger optimizer, data augmentation, and adversarial training, to improve the model prediction. Consequently, we attain first place in all four cross-lingual tasks.
Most studies on word-level Quality Estimation (QE) of machine translation focus on language-specific models. The obvious disadvantages of these approaches are the need for labelled data for each language pair and the high cost required to maintain several language-specific models. To overcome these problems, we explore different approaches to multilingual, word-level QE. We show that these QE models perform on par with the current language-specific models. In the cases of zero-shot and few-shot QE, we demonstrate that it is possible to accurately predict word-level quality for any given new language pair from models trained on other language pairs. Our findings suggest that the word-level QE models based on powerful pre-trained transformers that we propose in this paper generalise well across languages, making them more useful in real-world scenarios.
This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and context-dependent word representations. The key findings are that (1) context-free word representations are a powerful and robust baseline, (2) a sentence classification objective can be used to obtain useful context-dependent word representations, and (3) combining those representations increases performance on some datasets while decreasing performance on others.
This paper describes the performance of the team cs60075_team2 at SemEval 2021 Task 1 - Lexical Complexity Prediction. The main contribution of this paper is to fine-tune transformer-based language models pre-trained on several text corpora, some being general (E.g., Wikipedia, BooksCorpus), some being the corpora from which the CompLex Dataset was extracted, and others being from other specific domains such as Finance, Law, etc. We perform ablation studies on selecting the transformer models and how their individual complexity scores are aggregated to get the resulting complexity scores. Our method achieves a best Pearson Correlation of $0.784$ in sub-task 1 (single word) and $0.836$ in sub-task 2 (multiple word expressions).
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT itself performs competitively, our feature engineering-based model helps in extreme cases, eg. separating instances of easy and neutral difficulty. Our handcrafted features comprise a breadth of lexical, semantic, syntactic, and novel phonological measures. Visualizations of BERT attention maps offer insight into potential features that Transformers models may learn when fine-tuned for lexical complexity prediction. Our ensembled predictions score reasonably well for the single word subtask, and we demonstrate how they can be harnessed to perform well on the multi word expression subtask too.