New hardware architectures open up immense opportunities for supercomputer simulations. However, programming techniques for different architectures vary significantly, which leads to the necessity of developing and supporting multiple co
A simple form of the Boris solver in particle-in-cell (PIC) simulation is proposed. It employs an exact solution of the Lorentz-force part, and it is equivalent to the Boris solver with a gyrophase correction. As a favorable property for stable schemes, this form preserves a volume in the phase space. Numerical tests of the Boris solvers are conducted by test-particle simulations and by PIC simulations. The proposed form provides better accuracy than the popular form, while it only requires few additional computation time.
We construct Boris-type schemes for integrating the motion of charged particles in particle-in-cell (PIC) simulation. The new solvers virtually combine the 2-step Boris procedure arbitrary n times in the Lorentz-force part, and therefore we call them the multiple Boris solvers. Using Chebyshev polynomials, a one-step form of the new solvers is provided. The new solvers give n^2 times smaller errors, allow larger timesteps, and have a long-term stability. We present numerical tests of the new solvers, in comparison with other particle integrators.
We conduct to our knowledge a first measurement study of commercial 5G performance on smartphones by closely examining 5G networks of three carriers (two mmWave carriers, one mid-band carrier) in three U.S. cities. We conduct extensive field tests on 5G performance in diverse urban environments. We systematically analyze the handoff mechanisms in 5G and their impact on network performance. We explore the feasibility of using location and possibly other environmental information to predict the network performance. We also study the app performance (web browsing and HTTP download) over 5G. Our study consumes more than 15 TB of cellular data. Conducted when 5G just made its debut, it provides a baseline for studying how 5G performance evolves, and identifies key research directions on improving 5G users experience in a cross-layer manner. We have released the data collected from our study (referred to as 5Gophers) at https://fivegophers.umn.edu/www20.
The NEMO High Performance Computing Cluster at the University of Freiburg has been made available to researchers of the ATLAS and CMS experiments. Users access the cluster from external machines connected to the World-wide LHC Computing Grid (WLCG). This paper describes how the full software environment of the WLCG is provided in a virtual machine image. The interplay between the schedulers for NEMO and for the external clusters is coordinated through the ROCED service. A cloud computing infrastructure is deployed at NEMO to orchestrate the simultaneous usage by bare metal and virtualized jobs. Through the setup, resources are provided to users in a transparent, automatized, and on-demand way. The performance of the virtualized environment has been evaluated for particle physics applications.
We perform a detailed analysis of the C++ implementation of the Cluster Affiliation Model for Big Networks (BigClam) on the Stanford Network Analysis Project (SNAP). BigClam is a popular graph mining algorithm that is capable of finding overlapping communities in networks containing millions of nodes. Our analysis shows a key stage of the algorithm - determining if a node belongs to a community - dominates the runtime of the implementation, yet the computation is not parallelized. We show that by parallelizing computations across multiple threads using OpenMP we can speed up the algorithm by 5.3 times when solving large networks for communities, while preserving the integrity of the program and the result.
Valentin Volokitin
,Alexey Bashinov
,Evgeny Efimenko
.
(2021)
.
"High Performance Implementation of Boris Particle Pusher on DPC++. A First Look at oneAPI"
.
Iosif Meyerov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا