Do you want to publish a course? Click here

Strong low-frequency radio flaring from Cygnus X-3 observed with LOFAR

69   0   0.0 ( 0 )
 Added by Jess Broderick
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Low-Frequency Array (LOFAR) 143.5-MHz radio observations of flaring activity during 2019 May from the X-ray binary Cygnus X-3. Similar to radio observations of previous outbursts from Cygnus X-3, we find that this source was significantly variable at low frequencies, reaching a maximum flux density of about 5.8 Jy. We compare our LOFAR light curve with contemporaneous observations taken at 1.25 and 2.3 GHz with the RATAN-600 telescope, and at 15 GHz with the Arcminute Microkelvin Imager (AMI) Large Array. The initial 143.5-MHz flux density level, $sim$2 Jy, is suggested to be the delayed and possibly blended emission from at least some of the flaring activity that had been detected at higher frequencies before our LOFAR observations had begun. There is also evidence of a delay of more than four days between a bright flare that initially peaked on May 6 at 2.3 and 15 GHz, and the corresponding peak ($gtrsim$ 5.8 Jy) at 143.5 MHz. From the multi-frequency light curves, we estimate the minimum energy and magnetic field required to produce this flare to be roughly 10$^{44}$ erg and 40 mG, respectively, corresponding to a minimum mean power of $sim$10$^{38}$ erg s$^{-1}$. Additionally, we show that the broadband radio spectrum evolved over the course of our observing campaign; in particular, the two-point spectral index between 143.5 MHz and 1.25 GHz transitioned from being optically thick to optically thin as the flare simultaneously brightened at 143.5 MHz and faded at GHz frequencies.



rate research

Read More

The eclipses of certain types of binary millisecond pulsars (i.e. `black widows and `redbacks) are often studied using high-time-resolution, `beamformed radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of 2 weeks - 6 months, we find preliminary evidence that the eclipse duration is frequency dependent ($propto u^{-0.4}$), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.
With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emission is also detected when Cygnus X-3 was weakly flaring in radio, right before transition to the radio quenched state. No Gamma rays are observed during the ~ one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger Gamma-ray emission, implying a connection to the accretion process, and also that the Gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects: such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: High Band (120-167 MHz, 100 profiles) and Low Band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and1400 MHz) in order to study the profile evolution. The profiles are aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. We find that the profile evolution with decreasing radio frequency does not follow a specific trend but, depending on the geometry of the pulsar, new components can enter into, or be hidden from, view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories. We offer this catalog of low-frequency pulsar profiles in a user friendly way via the EPN Database of Pulsar Profiles (http://www.epta.eu.org/epndb/).
Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deeply studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.
Circinus X-1 is a bright and highly variable X-ray binary which displays strong and rapid evolution in all wavebands. Radio flaring, associated with the production of a relativistic jet, occurs periodically on a ~17-day timescale. A longer-term envelope modulates the peak radio fluxes in flares, ranging from peaks in excess of a Jansky in the 1970s to an historic low of milliJanskys during the years 1994 to 2007. Here we report first observations of this source with the MeerKAT test array, KAT-7, part of the pathfinder development for the African dish component of the Square Kilometre Array (SKA), demonstrating successful scientific operation for variable and transient sources with the test array. The KAT-7 observations at 1.9 GHz during the period 13 December 2011 to 16 January 2012 reveal in temporal detail the return to the Jansky-level events observed in the 1970s. We compare these data to contemporaneous single-dish measurements at 4.8 and 8.5 GHz with the HartRAO 26-m telescope and X-ray monitoring from MAXI. We discuss whether the overall modulation and recent dramatic brightening is likely to be due to an increase in the power of the jet due to changes in accretion rate or changing Doppler boosting associated with a varying angle to the line of sight.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا