Do you want to publish a course? Click here

First detection of doubly deuterated methyl acetylene (CHD2CCH and CH2DCCD)

118   0   0.0 ( 0 )
 Added by Marcelino Agundez
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first detection in space of the two doubly deuterated isotopologues of methyl acetylene. The species CHD2CCH and CH2DCCD were identified in the dense core L483 through nine and eight, respectively, rotational lines in the 72-116 GHz range using the IRAM 30m telescope. The astronomical frequencies observed here were combined with laboratory frequencies from the literature measured in the 29-47 GHz range to derive more accurate spectroscopic parameters for the two isotopologues. We derive beam-averaged column densities of (2.7 +/- 0.5)e12 cm-2 for CHD2CCH and (2.2 +/- 0.4)e12 cm-2 for CH2DCCD, which translate to abundance ratios CH3CCH/CHD2CCH = 34 +/- 10 and CH3CCH/CH2DCCD = 42 +/- 13. The doubly deuterated isotopologues of methyl acetylene are only a few times less abundant than the singly deuterated ones, concretely around 2.4 times less abundant than CH3CCD. The abundances of the different deuterated isotopologues with respect to CH3CCH are reasonably accounted for by a gas-phase chemical model in which deuteration occurs from the precursor ions C3H6D+ and C3H5D+, when the ortho-to-para ratio of molecular hydrogen is sufficiently low. This points to gas-phase chemical reactions, rather than grain-surface processes, as responsible for the formation and deuterium fractionation of CH3CCH in L483. The abundance ratios CH2DCCH/CH3CCD = 3.0 +/- 0.9 and CHD2CCH/CH2DCCD = 1.25 +/- 0.37 observed in L483 are consistent with the statistically expected values of three and one, respectively, with the slight overabundance of CHD2CCH compared to CH2DCCD being well explained by the chemical model.



rate research

Read More

110 - Karine Demyk 2010
High deuterium fractionation is observed in various types of environment such as prestellar cores, hot cores and hot corinos. It has proven to be an efficient probe to study the physical and chemical conditions of these environments. The study of the deuteration of different molecules helps us to understand their formation. This is especially interesting for complex molecules such as methanol and bigger molecules for which it may allow to differentiate between gas-phase and solid-state formation pathways. Methanol exhibits a high deuterium fractionation in hot corinos. Since CH3OH is thought to be a precursor of methyl formate we expect that deuterated methyl formate is produced in such environments. We have searched for the singly-deuterated isotopologue of methyl formate, DCOOCH3, in IRAS 16293-2422, a hot corino well-known for its high degree of methanol deuteration. We have used the IRAM/JCMT unbiased spectral survey of IRAS 16293-2422 which allows us to search for the DCOOCH3 rotational transitions within the survey spectral range (80-280 GHz, 328-366 GHz). The expected emission of deuterated methyl formate is modelled at LTE and compared with the observations.} We have tentatively detected DCOOCH3 in the protostar IRAS 16293-2422. We assign eight lines detected in the IRAM survey to DCOOCH3. Three of these lines are affected by blending problems and one line is affected by calibration uncertainties, nevertheless the LTE emission model is compatible with the observations. A simple LTE modelling of the two cores in IRAS 16293-2422, based on a previous interferometric study of HCOOCH3, allows us to estimate the amount of DCOOCH3 in IRAS 16293-2422. Adopting an excitation temperature of 100 K and a source size of 2arcsec and 1farcs5 for the A and B cores, respectively, we find that N(A,DCOOCH3) = N(B,DCOOCH3) ~ 6.10^14 /cm2. The derived deuterium fractionation is ~ 15%, consistent with values for other deuterated species in this source and much greater than that expected from the deuterium cosmic abundance. DCOOCH3, if its tentative detection is confirmed, should now be considered in theoretical models that study complex molecule formation and their deuteration mechanisms. Experimental work is also needed to investigate the different chemical routes leading to the formation of deuterated methyl formate.
Methyl formate, HCOOCH$_3$, and many of its isotopologues have been detected in astrophysical regions with considerable abundances. However, the recipe for the formation of this molecule and its isotopologues is not yet known. In this work, we attempt to investigate, theoretically, the successful recipe for the formation of interstellar HCOOCH$_3$ and its deuterated isotopologues. We used the gas-grain chemical model, UCLCHEM, to examine the possible routes of formation of methyl formate on grain surfaces and in the gas-phase in low-mass star-forming regions. Our models show that radical-radical association on grains are necessary to explain the observed abundance of DCOOCH$_3$ in the protostar IRAS~16293--2422. H-D substitution reactions on grains significantly enhance the abundances of HCOOCHD$_2$, DCOOCHD$_2$, and HCOOCD$_3$. The observed abundance of HCOOCHD$_2$ in IRAS 16293--2422 can only be reproduced if H-D substitution reactions are taken into account. However, HCOOCH$_2$D remain underestimated in all of our models. The deuteration of methyl formate appears to be more complex than initially thought. Additional studies, both experimentally and theoretically, are needed for a better understanding of the interstellar formation of these species.
Deuterated molecules are good tracers of the evolutionary stage of star-forming cores. During the star formation process, deuterated molecules are expected to be enhanced in cold, dense pre-stellar cores and to deplete after protostellar birth. In this paper we study the deuteration fraction of formaldehyde in high-mass star-forming cores at different evolutionary stages to investigate whether the deuteration fraction of formaldehyde can be used as an evolutionary tracer. Using the APEX SEPIA Band 5 receiver, we extended our pilot study of the $J$=3$rightarrow$2 rotational lines of HDCO and D$_2$CO to eleven high-mass star-forming regions that host objects at different evolutionary stages. High-resolution follow-up observations of eight objects in ALMA Band 6 were performed to reveal the size of the H$_2$CO emission and to give an estimate of the deuteration fractions HDCO/H$_2$CO and D$_2$CO/HDCO at scales of $sim$6 (0.04-0.15 pc at the distance of our targets). Our observations show that singly- and doubly deuterated H$_2$CO are detected toward high-mass protostellar objects (HMPOs) and ultracompact HII regions (UCHII regions), the deuteration fraction of H$_2$CO is also found to decrease by an order of magnitude from the earlier HMPO phases to the latest evolutionary stage (UCHII), from $sim$0.13 to $sim$0.01. We have not detected HDCO and D$_2$CO emission from the youngest sources (high-mass starless cores, HMSCs). Our extended study supports the results of the previous pilot study: the deuteration fraction of formaldehyde decreases with evolutionary stage, but higher sensitivity observations are needed to provide more stringent constraints on the D/H ratio during the HMSC phase. The calculated upper limits for the HMSC sources are high, so the trend between HMSC and HMPO phases cannot be constrained.
116 - B. Parise , A. Castets , E. Herbst 2003
We report the first detection of triply-deuterated methanol, with 12 observed transitions, towards the low-mass protostar IRAS 16293-2422, as well as multifrequency observations of 13CH3OH, used to derive the column density of the main isotopomer CH3OH. The derived fractionation ratio [CD3OH]/[CH3OH] averaged on a 10 beam is 1.4%. Together with previous CH2DOH and CHD2OH observations, the present CD3OH observations are consistent with a formation of methanol on grain surfaces, if the atomic D/H ratio is 0.1 to 0.3 in the accreting gas. Such a high atomic ratio can be reached in the frame of gas-phase chemical models including all deuterated isotopomers of H3+.
Collisional de-excitation rates of partially deuterated molecules are different from the fully hydrogenated species because of lowering of symmetry. We compute the collisional (de)excitation rates of ND2H by ground state para-H2, extending the previous results for He- lium. We describe the changes in the potential energy surface of NH3- H2 involved by the pres- ence of two deuterium nuclei. Cross sections are calculated within the full close-coupling ap- proach and augmented with coupled-state calculations. Collisional rate coefficients are given between 5 and 35 K, a range of temperatures which is relevant to cold interstellar conditions. We find that the collisional rates of ND2H by H2 are about one order of magnitude higher than those obtained with Helium as perturber. These results are essential to radiative transfer modelling and will allow to interpret the millimeter and submillimeter detections of ND2H with better constraints than previously.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا