Random Batch Methods for classical and quantum interacting particle systems and statistical samplings


Abstract in English

We review the Random Batch Methods (RBM) for interacting particle systems consisting of $N$-particles, with $N$ being large. The computational cost of such systems is of $O(N^2)$, which is prohibitively expensive. The RBM methods use small but random batches so the computational cost is reduced, per time step, to $O(N)$. In this article we discuss these methods for both classical and quantum systems, the corresponding theory, and applications from molecular dynamics, statistical samplings, to agent-based models for collective behavior, and quantum Monte-Carlo methods.

Download