No Arabic abstract
In Mott insulators the evolution of antiferromagnetic order to superconducting or charge-density-wave-like states upon chemical doping underpins the control of quantum phases. Photo-doping can induce similar transitions on the ultrafast timescale, however the response of the spin system has remained elusive. Here, we use 4D-ultrafast optical spectroscopy to extract quantitative magnetic dynamics in the spin-orbit coupled Mott insulator Sr3Ir2O7. We demonstrate that light can non-thermally melt long-range spin order. At low fluences magnetic order recovers within 1 ps despite demagnetization of roughly 50%. However, high fluences induce a crossover to a long-lived demagnetized state without increasing the lattice temperature. We show that the generation of photo-induced spin defects enables a mechanism that stabilizes the demagnetized state which could help expose new transient phases.
The specific heat, magnetic susceptibility and ESR signals of a Na-deficient vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07 - 10 K, well below the transition point to a spin-gap state. The contribution of defects provided by sodium vacancies to the specific heat was observed. It has a low temperature part which does not tend to zero till at least 0.3 K and a high temperature power-like tail appears above 2 K. Such dependence may correspond to the existence of local modes and correlations between defects in V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of freedom for the defects, with their effective number increasing in temperature and under magnetic field. The latter results in the nonsaturating magnetization at low temperature. No long-range magnetic ordering in the system of defects was found. A model for the defects based on electron jumps near vacancies is proposed to explain the observed effects. The concept of a frustrated two-dimensional correlated magnet induced by the defects is considered to be responsible for the absence of magnetic ordering.
We discuss the recent progress and the current status of experimental investigations of spin-mediated energy transport in spin-chain and spin-ladder materials with antiferromagnetic coupling. We briefly outline the central results of theoretical studies on the subject but focus mainly on recent experimental results that were obtained on materials which may be regarded as adequate physical realizations of the idealized theoretical model systems. Some open questions and unsettled issues are also addressed.
Magnetism arising from coupled spin and spatial degrees of freedom underlies the properties of a broad array of physical systems. We study here the interplay between correlations in spin and space for the quantum compass model in a finite external field, using quantum Monte Carlo methods. We find that finite temperatures cant the spin and space (bond) correlations, with increasing temperature even reorienting spin correlations between orthogonal spatial directions. We develop a coupled mean field theory to understand this effect in terms of the underlying quantum critical properties of crossed Ising chains in transverse fields and an effective field that weakens upon increasing temperature. Thermal canting offers an experimental signature of spin-bond anisotropy.
We study the ground-state properties of a spin-1 Heisenberg model on the square lattice with the first and second nearest-neighbor antiferromagnetic couplings $J_1$, $J_2$ and a three-spin scalar chirality term $J_chi$. Using the density matrix renormalization group calculation, we map out a global phase diagram including various magnetic order phases and an emergent quantum spin liquid phase. The nature of the spin liquid is identified as a bosonic non-Abelian Moore-Read state by the fingerprint of the entanglement spectra and identification of a full set of topological sectors. We further unveil a stripe magnetic order coexisting with this spin liquid. Our results not only establish a rare example of non-Abelian spin liquids in simple spin systems, but also demonstrate the coexistence of fractionalized excitations and magnetic order beyond mean-field descriptions.
We study the dynamics of excitonic insulators coupled to phonons. Without phonon couplings, the linear response is given by the damped amplitude oscillations of the order parameter with frequency equal to the minimum band gap. A phonon coupling to the interband transfer integral induces two types of long-lived collective oscillations of the amplitude, one originating from the phonon dynamics and the other from the phase mode, which becomes massive. We show that even for small phonon coupling, a photo-induced enhancement of the exciton condensation and the gap can be realized. Using the Anderson pseudo-spin picture, we argue that the origin of the enhancement is a cooperative effect of the massive phase mode and the Hartree shift induced by the photo excitation. We also discuss how the enhancement of the order and the collective modes can be observed with time-resolved photo-emission spectroscopy.