The CH radical at radio wavelengths: Revisiting emission in the 3.3GHz ground state lines


Abstract in English

The intensities of the three widely observed radio-wavelength hyperfine structure (HFS) lines between the {Lambda}-doublet components of the rotational ground state of CH are inconsistent with LTE and indicate ubiquitous population inversion. While this can be qualitatively understood assuming a pumping cycle that involves collisional excitation processes, the relative intensities of the lines and in particular the dominance of the lowest frequency satellite line has not been well understood. This has limited the use of CH radio emission as a tracer of the molecular interstellar medium. We present the first interferometric observations, with the Karl G. Jansky Very Large Array, of the CH 9 cm ground state HFS transitions at 3.264 GHz, 3.335 GHz, and 3.349 GHz toward four high mass star-forming regions (SFRs) Sgr B2 (M), G34.26+0.15, W49 (N), and W51. We investigate the nature of the (generally) weak CH ground state masers by employing synergies between the ground state HFS transitions themselves and with the far-infrared lines, near 149 {mu}m (2 THz), that connect these levels to an also HFS split rotationally excited level. Employing recently calculated collisional rate coefficients, we perform statistical equilibrium calculations with the non-LTE radiative transfer code MOLPOP-CEP in order to model the excitation conditions traced by the ground state HFS lines of CH and to infer the physical conditions in the emitting regions while also accounting for the effects of far-infrared line overlap.

Download