SYK Meets Non-Hermiticity I: Emergent Replica Conformal Symmetry


Abstract in English

Recently, the steady states of non-unitary free fermion dynamics are found to exhibit novel critical phases with power-law squared correlations and a logarithmic subsystem entanglement. In this work, we theoretically understand the underlying physics by constructing solvable static/Brownian quadratic Sachdev-Ye-Kitaev chains with non-Hermitian dynamics. We find the action of the replicated system generally shows (one or infinite copies of) $O(2)times O(2)$ symmetries, which is broken to $O(2)$ by the saddle-point solution. This leads to an emergent conformal field theory of the Goldstone modes. We derive their effective action and obtain the universal critical behaviors of squared correlators. Furthermore, the entanglement entropy of a subsystem $A$ with length $L_A$ corresponds to the energy of the half-vortex pair $Ssim rho_s log L_A$, where $rho_s$ is the stiffness of the Goldstone mode. We also discuss special limits where more than one Goldstone mode exists and comment on interaction effects.

Download