Do you want to publish a course? Click here

Thermal axions with multi-eV masses are possible in low-reheating scenarios

59   0   0.0 ( 0 )
 Added by Pierluca Carenza
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revise cosmological mass bounds on hadronic axions in low-reheating cosmological scenarios, with a reheating temperature $T_{rm RH}~le 100$ MeV, in light of the latest cosmological observations. In this situation, the neutrino decoupling would be unaffected, while the thermal axion relic abundance is suppressed. Moreover, axions are colder in low-reheating temperature scenarios, so that bounds on their abundance are possibly loosened. As a consequence of these two facts, cosmological mass limits on axions are relaxed. Using state-of-the-art cosmological data and characterizing axion-pion interactions at the leading order in chiral perturbation theory, we find in the standard case an axion mass bound $m_a < 0.26$ eV. However, axions with masses $m_a simeq 1$ eV, or heavier, would be allowed for reheating temperatures $T_{rm RH} lesssim 80$ MeV. Multi-eV axions would be outside the mass sensitivity of current and planned solar axion helioscopes and would demand new experimental approaches to be detected.



rate research

Read More

We consider the case of very low reheating scenarios ($T_{rm RH}simmathcal{O}({rm MeV})$) with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature $T_{rm RH}>4.1$ MeV is obtained from Big Bang Nucleosynthesis, while $T_{rm RH}>4.3$ MeV from Planck data for very light ($sum m_i = 0.06$ eV) neutrinos. If neutrino masses are allowed to vary, Planck data yield $T_{rm RH}>4.7$ MeV, the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.
We present strong bounds on the sum of three active neutrino masses ($sum m_{ u}$) in various cosmological models. We use the following baseline datasets: CMB temperature data from Planck 2015, BAO measurements from SDSS-III BOSS DR12, the newly released SNe Ia dataset from Pantheon Sample, and a prior on the optical depth to reionization from 2016 Planck Intermediate results. We constrain cosmological parameters in $Lambda CDM$ model with 3 massive active neutrinos. For this $Lambda CDM+sum m_{ u}$ model we find a upper bound of $sum m_{ u} <$ 0.152 eV at 95$%$ C.L. Adding the high-$l$ polarization data from Planck strengthens this bound to $sum m_{ u} <$ 0.118 eV, which is very close to the minimum required mass of $sum m_{ u} simeq$ 0.1 eV for inverted hierarchy. This bound is reduced to $sum m_{ u} <$ 0.110 eV when we also vary r, the tensor to scalar ratio ($Lambda CDM+r+sum m_{ u}$ model), and add an additional dataset, BK14, the latest data released from the Bicep-Keck collaboration. This bound is further reduced to $sum m_{ u} <$ 0.101 eV in a cosmology with non-phantom dynamical dark energy ($w_0 w_a CDM+sum m_{ u}$ model with $w(z)geq -1$ for all $z$). Considering the $w_0 w_a CDM+r+sum m_{ u}$ model and adding the BK14 data again, the bound can be even further reduced to $sum m_{ u} <$ 0.093 eV. For the $w_0 w_a CDM+sum m_{ u}$ model without any constraint on $w(z)$, the bounds however relax to $sum m_{ u} <$ 0.276 eV. Adding a prior on the Hubble constant ($H_0 = 73.24pm 1.74$ km/sec/Mpc) from Hubble Space Telescope (HST), the above mentioned bounds further improve to $sum m_{ u} <$ 0.117 eV, 0.091 eV, 0.085 eV, 0.082 eV, 0.078 eV and 0.247 eV respectively. This substantial improvement is mostly driven by a more than 3$sigma$ tension between Planck 2015 and HST measurements of $H_0$ and should be taken cautiously. (abstract abridged)
We have searched for solar axions or other pseudoscalar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) setup. Whereas we previously have reported results from CAST with evacuated magnet bores (Phase I), setting limits on lower mass axions, here we report results from CAST where the magnet bores were filled with hefour gas (Phase II) of variable pressure. The introduction of gas generated a refractive photon mass $m_gamma$, thereby achieving the maximum possible conversion rate for those axion masses ma that match $m_gamma$. With 160 different pressure settings we have scanned ma up to about 0.4 eV, taking approximately 2 h of data for each setting. From the absence of excess X-rays when the magnet was pointing to the Sun, we set a typical upper limit on the axion-photon coupling of $gaglesssim 2.17times 10^{-10} {rm GeV}^{-1}$ at 95% CL for $ma lesssim 0.4$ eV, the exact result depending on the pressure setting. The excluded parameter range covers realistic axion models with a Peccei-Quinn scale in the neighborhood of $f_{rm a}sim10^{7}$ GeV. Currently in the second part of CAST Phase II, we are searching for axions with masses up to about 1.2 eV using hethree as a buffer gas.
Analyses of inflation models are usually conducted assuming a specific range---e.g., $N_k simeq 50-60$--of the number $N_k$ of $e$-folds of inflation. However, the analysis can also be performed by taking into account constraints imposed by the physics of reheating. In this paper, we apply this analysis to a class of WIMPflation models in which the inflaton also plays the role of dark matter. Our analysis also updates prior WIMPflation work with more recent Planck 2018 data. With this new analysis, inflaton potentials $V(phi)=lambdaphi^4$ and $lambda phi_0^4[1-cos(phi/phi_0)]^2$ are ruled out, while $V(phi)=lambda phi_0^4{1-exp[-(phi/phi_0)^2]}^2$ is slightly disfavored, and $V(phi)=lambdaphi_0^4tanh^4(phi/phi_0)$ is only viable for certain reheating conditions. In addition, we also discuss for the first time the effect of post-reheating entropy production (from, e.g., cosmological phase transitions) in this reheating-physics analysis. When accounted for, it decreases the number of $e$-folds through $Delta N_k=-(1/3)ln(1+gamma)$, where $gammaequivdelta s/s$ is the fractional increase in entropy. We discuss briefly the possible impact of entropy production to inflation-model constraints in earlier work.
We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few $times$ 10$^{-11},$GeV$^{-1}$ for a 5$,$T$,$m$^3$ scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 100 meV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا