New X-ray observations of the hot subdwarf binary HD49798 / RXJ0648.0-4418


Abstract in English

HD49798 / RXJ0648.0-4418 is the only confirmed X-ray binary in which the mass donor is a hot subdwarf star of O spectral type and, most likely, it contains a massive white dwarf (1.28$pm$0.05 M$_{rm SUN}$) with a very fast spin period of 13.2 s. Here we report the results of new XMM-Newton pointings of this peculiar binary, carried out in 2018 and in 2020, together with a reanalysis of all the previous observations. The new data indicate that the compact object is still spinning-up at a steady rate of $(-2.17pm0.01)times10^{-15}$ s s$^{-1}$, consistent with its interpretation in terms of a young contracting white dwarf. Comparison of observations obtained at similar orbital phases, far from the ecplise, shows evidence for long term variability of the hard ($>$0.5 keV) spectral component at a level of $sim$(70$pm$20)%, suggesting the presence of time-dependent inhomogeneities in the weak stellar wind of the HD49798 subdwarf. To investigate better the soft spectral component that dominates the X-ray flux from this system, we computed a theoretical model for the thermal emission expected from an atmosphere with element abundances and surface gravity appropriate for this massive white dwarf. This model gives a best fit with effective temperature of T$_{rm eff}$=2.25$times$10$^5$ K and an emitting area with radius of $sim$1600 km, larger than that found with blackbody fits. This model also predicts a contribution of the pulsed emission from the white dwarf in the optical band significantly larger than previously thought and possibly relevant for optical variability studies of this system.

Download