Do you want to publish a course? Click here

The deconvolution problem of deeply virtual Compton scattering

130   0   0.0 ( 0 )
 Added by Herv\\'e Dutrieux
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Generalised parton distributions are instrumental to study both the three-dimensional structure and the energy-momentum tensor of the nucleon, and motivate numerous experimental programmes involving hard exclusive measurements. Based on a next-to-leading order analysis and a careful study of evolution effects, we exhibit non-trivial generalised parton distributions with arbitrarily small imprints on deeply virtual Compton scattering observables. This means that in practice the reconstruction of generalised parton distributions from measurements, known as the deconvolution problem, does not possess a unique solution for this channel. In this Letter we discuss the consequences on the extraction of generalised parton distributions from data and advocate for a multi-channel analysis.



rate research

Read More

Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final photon-nucleus system, and in the generalized Bjorken regime where both photon virtualities $Q^2$ and $ Q^2$ are large. We show that this process has the unique virtue of combining the large diffractive cross sections at high energy with the tomographic ability of deeply virtual Compton scattering to scrutinize the quark and gluon content of nucleons and light nuclei. Its study at an electron-ion collider would enlighten the internal structure of hadrons.
The three-dimensional structure of nucleons (protons and neutrons) is embedded in so-called generalized parton distributions, which are accessible from deeply virtual Compton scattering. In this process, a high energy electron is scattered off a nucleon by exchanging a virtual photon. Then, a highly-energetic real photon is emitted from one of the quarks inside the nucleon, which carries information on the quarks transverse position and longitudinal momentum. By measuring the cross-section of deeply virtual Compton scattering, Compton form factors related to the generalized parton distributions can be extracted. Here, we report the observation of unpolarized deeply virtual Compton scattering off a deuterium target. From the measured photon-electroproduction cross-sections, we have extracted the cross-section of a quasi-free neutron and a coherent deuteron. Due to the approximate isospin symmetry of quantum chromodynamics, we can determine the contributions from the different quark flavours to the helicity-conserved Compton form factors by combining our measurements with previous ones probing the protons internal structure. These results advance our understanding of the description of the nucleon structure, which is important to solve the proton spin puzzle.
The sub-leading power of the scattering amplitude for deeply-virtual Compton scattering (DVCS) off the nucleon contains leading-twist and twist-3 generalized parton distributions (GPDs). We point out that in DVCS, at twist-3 accuracy, one cannot address any individual twist-3 GPD. This complication appears on top of the deconvolution issues familiar from the twist-2 DVCS amplitude. Accessible are exclusively linear combinations involving both vector and axial-vector twist-3 GPDs. This implies, in particular, that the (kinetic) orbital angular momentum of quarks can hardly be constrained by twist-3 DVCS observables. Moreover, using the quark-target model, we find that twist-3 GPDs can be discontinuous. The discontinuities however cancel in the DVCS amplitude, which further supports the hypothesis of factorization at twist-3 accuracy.
553 - Latifa Elouadrhiri 2008
An overview is given about the capabilities provided by the JLab 12 GeV Upgrade to measure deeply virtual exclusive processes with high statistics and covering a large kinematics range in the parameters that are needed to allow reconstruction of a spatial image of the nucleons quark structure. The measurements planned with CLAS12 will cross section asymmetries with polarized beams and with longitudinally and transversely polarized proton targets in the constrained kinematics $x = pm xi$. In addition, unpolarized DVCS cross sections, and doubly polarized beam target asymmetries will be measured as well. In this talk only the beam and target asymmetries will be discussed.
123 - M.Capua , S. Fazio , R.Fiore 2006
A factorized Regge-pole model for deeply virtual Compton scattering is suggested. The use of an effective logarithmic Regge-Pomeron trajectory provides for the description of both ``soft (small $|t|$) and ``hard (large $|t|$) dynamics. The model contains explicitly the photoproduction and the DIS limits and fits the existing HERA data on deeply virtual Compton scattering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا