Do you want to publish a course? Click here

Sugar and Stops in Drivers with Insulin-Dependent Type 1 Diabetes

55   0   0.0 ( 0 )
 Added by Ashirwad Barnwal
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Diabetes is a major public health challenge worldwide. Abnormal physiology in diabetes, particularly hypoglycemia, can cause driver impairments that affect safe driving. While diabetes driver safety has been previously researched, few studies link real-time physiologic changes in drivers with diabetes to objective real-world driver safety, particularly at high-risk areas like intersections. To address this, we investigated the role of acute physiologic changes in drivers with type 1 diabetes mellitus (T1DM) on safe stopping at stop intersections. 18 T1DM drivers (21-52 years, mean = 31.2 years) and 14 controls (21-55 years, mean = 33.4 years) participated in a 4-week naturalistic driving study. At induction, each participants vehicle was fitted with a camera and sensor system to collect driving data. Video was processed with computer vision algorithms detecting traffic elements. Stop intersections were geolocated with clustering methods, state intersection databases, and manual review. Videos showing driver stop intersection approaches were extracted and manually reviewed to classify stopping behavior (full, rolling, and no stop) and intersection traffic characteristics. Mixed-effects logistic regression models determined how diabetes driver stopping safety (safe vs. unsafe stop) was affected by 1) disease and 2) at-risk, acute physiology (hypo- and hyperglycemia). Diabetes drivers who were acutely hyperglycemic had 2.37 increased odds of unsafe stopping (95% CI: 1.26-4.47, p = 0.008) compared to those with normal physiology. Acute hypoglycemia did not associate with unsafe stopping (p = 0.537), however the lower frequency of hypoglycemia (vs. hyperglycemia) warrants a larger sample of drivers to investigate this effect. Critically, presence of diabetes alone did not associate with unsafe stopping, underscoring the need to evaluate driver physiology in licensing guidelines.



rate research

Read More

The human insulin-glucose metabolism is a time-varying process, which is partly caused by the changing insulin sensitivity of the body. This insulin sensitivity follows a circadian rhythm and its effects should be anticipated by any automated insulin delivery system. This paper presents an extension of our previous work on automated insulin delivery by developing a controller suitable for humans with Type 1 Diabetes Mellitus. Furthermore, we enhance the controller with a new kernel function for the Gaussian Process and deal with noisy measurements, as well as, the noisy training data for the Gaussian Process, arising therefrom. This enables us to move the proposed control algorithm, a combination of Model Predictive Controller and a Gaussian Process, closer towards clinical application. Simulation results on the University of Virginia/Padova FDA-accepted metabolic simulator are presented for a meal schedule with random carbohydrate sizes and random times of carbohydrate uptake to show the performance of the proposed control scheme.
Objective: To evaluate unsupervised clustering methods for identifying individual-level behavioral-clinical phenotypes that relate personal biomarkers and behavioral traits in type 2 diabetes (T2DM) self-monitoring data. Materials and Methods: We used hierarchical clustering (HC) to identify groups of meals with similar nutrition and glycemic impact for 6 individuals with T2DM who collected self-monitoring data. We evaluated clusters on: 1) correspondence to gold standards generated by certified diabetes educators (CDEs) for 3 participants; 2) face validity, rated by CDEs, and 3) impact on CDEs ability to identify patterns for another 3 participants. Results: Gold standard (GS) included 9 patterns across 3 participants. Of these, all 9 were re-discovered using HC: 4 GS patterns were consistent with patterns identified by HC (over 50% of meals in a cluster followed the pattern); another 5 were included as sub-groups in broader clusers. 50% (9/18) of clusters were rated over 3 on 5-point Likert scale for validity, significance, and being actionable. After reviewing clusters, CDEs identified patterns that were more consistent with data (70% reduction in contradictions between patterns and participants records). Discussion: Hierarchical clustering of blood glucose and macronutrient consumption appears suitable for discovering behavioral-clinical phenotypes in T2DM. Most clusters corresponded to gold standard and were rated positively by CDEs for face validity. Cluster visualizations helped CDEs identify more robust patterns in nutrition and glycemic impact, creating new possibilities for visual analytic solutions. Conclusion: Machine learning methods can use diabetes self-monitoring data to create personalized behavioral-clinical phenotypes, which may prove useful for delivering personalized medicine.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
We review methods for monitoring multivariate time-between-events (TBE) data. We present some underlying complexities that have been overlooked in the literature. It is helpful to classify multivariate TBE monitoring applications into two fundamentally different scenarios. One scenario involves monitoring individual vectors of TBE data. The other involves the monitoring of several, possibly correlated, temporal point processes in which events could occur at different rates. We discuss performance measures and advise the use of time-between-signal based metrics for the design and comparison of methods. We re-evaluate an existing multivariate TBE monitoring method, offer some advice and some directions for future research.
79 - Xu Wu , Ziyu Xie , Farah Alsafadi 2021
Uncertainty Quantification (UQ) is an essential step in computational model validation because assessment of the model accuracy requires a concrete, quantifiable measure of uncertainty in the model predictions. The concept of UQ in the nuclear community generally means forward UQ (FUQ), in which the information flow is from the inputs to the outputs. Inverse UQ (IUQ), in which the information flow is from the model outputs and experimental data to the inputs, is an equally important component of UQ but has been significantly underrated until recently. FUQ requires knowledge in the input uncertainties which has been specified by expert opinion or user self-evaluation. IUQ is defined as the process to inversely quantify the input uncertainties based on experimental data. This review paper aims to provide a comprehensive and comparative discussion of the major aspects of the IUQ methodologies that have been used on the physical models in system thermal-hydraulics codes. IUQ methods can be categorized by three main groups: frequentist (deterministic), Bayesian (probabilistic), and empirical (design-of-experiments). We used eight metrics to evaluate an IUQ method, including solidity, complexity, accessibility, independence, flexibility, comprehensiveness, transparency, and tractability. Twelve IUQ methods are reviewed, compared, and evaluated based on these eight metrics. Such comparative evaluation will provide a good guidance for users to select a proper IUQ method based on the IUQ problem under investigation.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا