No Arabic abstract
We present a novel method for graph partitioning, based on reinforcement learning and graph convolutional neural networks. Our approach is to recursively partition coarser representations of a given graph. The neural network is implemented using SAGE graph convolution layers, and trained using an advantage actor critic (A2C) agent. We present two variants, one for finding an edge separator that minimizes the normalized cut or quotient cut, and one that finds a small vertex separator. The vertex separators are then used to construct a nested dissection ordering to permute a sparse matrix so that its triangular factorization will incur less fill-in. The partitioning quality is compared with partitions obtained using METIS and SCOTCH, and the nested dissection ordering is evaluated in the sparse solver SuperLU. Our results show that the proposed method achieves similar partitioning quality as METIS and SCOTCH. Furthermore, the method generalizes across different classes of graphs, and works well on a variety of graphs from the SuiteSparse sparse matrix collection.
Graph similarity computation aims to predict a similarity score between one pair of graphs to facilitate downstream applications, such as finding the most similar chemical compounds similar to a query compound or Fewshot 3D Action Recognition. Recently, some graph similarity computation models based on neural networks have been proposed, which are either based on graph-level interaction or node-level comparison. However, when the number of nodes in the graph increases, it will inevitably bring about reduced representation ability or high computation cost. Motivated by this observation, we propose a graph partitioning and graph neural network-based model, called PSimGNN, to effectively resolve this issue. Specifically, each of the input graphs is partitioned into a set of subgraphs to extract the local structural features directly. Next, a novel graph neural network with an attention mechanism is designed to map each subgraph into an embedding vector. Some of these subgraph pairs are automatically selected for node-level comparison to supplement the subgraph-level embedding with fine-grained information. Finally, coarse-grained interaction information among subgraphs and fine-grained comparison information among nodes in different subgraphs are integrated to predict the final similarity score. Experimental results on graph datasets with different graph sizes demonstrate that PSimGNN outperforms state-of-the-art methods in graph similarity computation tasks using approximate Graph Edit Distance (GED) as the graph similarity metric.
Efficient numerical solvers for sparse linear systems are crucial in science and engineering. One of the fastest methods for solving large-scale sparse linear systems is algebraic multigrid (AMG). The main challenge in the construction of AMG algorithms is the selection of the prolongation operator -- a problem-dependent sparse matrix which governs the multiscale hierarchy of the solver and is critical to its efficiency. Over many years, numerous methods have been developed for this task, and yet there is no known single right answer except in very special cases. Here we propose a framework for learning AMG prolongation operators for linear systems with sparse symmetric positive (semi-) definite matrices. We train a single graph neural network to learn a mapping from an entire class of such matrices to prolongation operators, using an efficient unsupervised loss function. Experiments on a broad class of problems demonstrate improved convergence rates compared to classical AMG, demonstrating the potential utility of neural networks for developing sparse system solvers.
Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this graph structure. In this work, we leverage graph signal processing to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
Let $f:{-1,1}^n$ be a polynomial with at most $s$ non-zero real coefficients. We give an algorithm for exactly reconstructing f given random examples from the uniform distribution on ${-1,1}^n$ that runs in time polynomial in $n$ and $2s$ and succeeds if the function satisfies the unique sign property: there is one output value which corresponds to a unique set of values of the participating parities. This sufficient condition is satisfied when every coefficient of f is perturbed by a small random noise, or satisfied with high probability when s parity functions are chosen randomly or when all the coefficients are positive. Learning sparse polynomials over the Boolean domain in time polynomial in $n$ and $2s$ is considered notoriously hard in the worst-case. Our result shows that the problem is tractable for almost all sparse polynomials. Then, we show an application of this result to hypergraph sketching which is the problem of learning a sparse (both in the number of hyperedges and the size of the hyperedges) hypergraph from uniformly drawn random cuts. We also provide experimental results on a real world dataset.
Graph Neural Networks (GNNs) have proved to be an effective representation learning framework for graph-structured data, and have achieved state-of-the-art performance on many practical predictive tasks, such as node classification, link prediction and graph classification. Among the variants of GNNs, Graph Attention Networks (GATs) learn to assign dense attention coefficients over all neighbors of a node for feature aggregation, and improve the performance of many graph learning tasks. However, real-world graphs are often very large and noisy, and GATs are prone to overfitting if not regularized properly. Even worse, the local aggregation mechanism of GATs may fail on disassortative graphs, where nodes within local neighborhood provide more noise than useful information for feature aggregation. In this paper, we propose Sparse Graph Attention Networks (SGATs) that learn sparse attention coefficients under an $L_0$-norm regularization, and the learned sparse attentions are then used for all GNN layers, resulting in an edge-sparsified graph. By doing so, we can identify noisy/task-irrelevant edges, and thus perform feature aggregation on most informative neighbors. Extensive experiments on synthetic and real-world graph learning benchmarks demonstrate the superior performance of SGATs. In particular, SGATs can remove about 50%-80% edges from large assortative graphs, while retaining similar classification accuracies. On disassortative graphs, SGATs prune majority of noisy edges and outperform GATs in classification accuracies by significant margins. Furthermore, the removed edges can be interpreted intuitively and quantitatively. To the best of our knowledge, this is the first graph learning algorithm that shows significant redundancies in graphs and edge-sparsified graphs can achieve similar or sometimes higher predictive performances than original graphs.