Do you want to publish a course? Click here

AR Based Half-Duplex Attack in Beyond 5G networks

289   0   0.0 ( 0 )
 Added by Misbah Shafi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With the evolution of WCN (Wireless communication networks), the absolute fulfillment of security occupies the fundamental concern. In view of security, we have identified another research direction based on the attenuation impact of rain in WCN. An approach is initiated by an eavesdropper in which a secure communication environment is degraded by generating Artificial Rain (AR), which creates an abatement in the secrecy rate, and the cybersecurity gets compromised. By doing so, an attacking scenario is perceived, in which an intruder models a Half-Duplex (HD) attack. Half-Duplex specifies the attack on the downlink instead of targeting both uplink and downlink. This allows the attacker to alleviate the miss-rate of the attacking attempts. The layout for the HD attack is explained using RRC (Radio Resource Control)-setup. Further, we have determined and examined the performance parameters such as secrecy rate, energy efficiency, miss-rate, sensitivity in the presence of AR. Further comparison of rural and urban scenarios in the presence and absence of AR is carried out concerning the variation in secrecy rate with respect to the millimeter-wave frequencies and distance. Lastly, the methodology of the HD attack is simulated, revealing that the HD attack maintains a low miss rate with improved performance as compared to the performance and miss-rate attained by the full-duplex attack



rate research

Read More

The visualization of future generation Wireless Communication Network WCN redirects the presumption of onward innovations, the fulfillment of user demands in the form of high data rates, energy efficiency, low latency, and long-range services. To content these demands, various technologies such as massive MIMO Multiple Input Multiple Output, UDN Ultra Dense Network, spectrum sharing, D2D Device to Device communication were improvised in the next generation WCN. In comparison to previous technologies, these technologies exhibit flat architecture, the involvement of clouds in the network, centralized architecture incorporating small cells which creates vulnerable breaches initiating menaces to the security of the network. The half-duplex attack is another threat to the WCN, where the resource spoofing mechanism is attained in the downlink phase of D2D communication. Instead of triggering an attack on both uplink and downlink, solely downlink is targeted by the attacker. This scheme allows the reduced failed attempt rate of the attacker as compared to the conventional attacks. The analysis is determined on the basis of Poissons distribution to determine the probability of failed attempts of half duplex attack in contrast to a full duplex attack
Cognitive radio technology, which is designed to enhance spectrum utilization, depends on the success of opportunistic access, where secondary users (SUs) exploit spectrum void unoccupied by primary users (PUs) for transmissions. We note that the system behaviors are very similar to the interactions among different species coexisting in an ecosystem. However, SUs of a selfish nature or of misleading information may make concurrent transmissions with PUs for additional incentives, and thus disrupt the entire ecosystem. By exploiting this vulnerability, this paper proposes a novel distributed denial-of-service (DoS) attack where invasive species, i.e., malicious users (MUs), induce originally normal-behaved SUs to execute concurrent transmissions with PUs and thus collapse the cognitive radio network. We adopt stochastic geometry to model the spatial distributions of PUs, SUs, and MUs for the analysis of the mutual interference among them. The access strategy of each SU in the spectrum sharing ecosystem, which evolves with the experienced payoffs and interference, is modeled by an evolutionary game. Based on the evolutionary stable strategy concept, we could efficiently identify the fragile operating region at which normal-behaved SUs are eventually evolved to conduct concurrent transmissions and thus to cause the ruin of the network.
The recent progress in the area of self-interference cancellation (SIC) design has enabled the development of full-duplex (FD) single and multiple antenna systems. In this paper, we propose a design for FD eNodeB (eNB) and user equipment (UE) for 5G networks. The use of FD operation enables simultaneous in-band uplink and downlink operation and thereby cutting down the spectrum requirement by half. FD operation requires the same subcarrier allocation to UE in both uplink and downlink. Long Term Evolution LTE) uses orthogonal frequency division multiple access (OFDMA) for downlink. To enable FD operation, we propose using single carrier frequency division multiple access SC-FDMA) for downlink along with the conventional method of using it for uplink. Taking advantage of channel reciprocity, singular value decomposition (SVD) based eamforming in the downlink allows multiple users (MU) to operate on same set of subcarriers. In uplink, frequency domain minimum mean square error (MMSE) equalizer along with successive interference cancellation with optimal ordering (SSIC-OO) algorithm is used to decouple signals of users operating in the same set of subcarriers. The work includes simulations showing efficient FD operation both at UE and eNB for downlink and uplink respectively.
The feasibility of practical in-band full-duplex radios has recently been demonstrated experimentally. One way to leverage full-duplex in a network setting is to enable three-node full-duplex, where a full- duplex access point (AP) transmits data to one node yet simultaneously receives data from another node. Such three-node full-duplex communication however introduces inter-client interference, directly impacting the full-duplex gain. It hence may not always be beneficial to enable three-node full-duplex transmissions. In this paper, we present a distributed full-duplex medium access control (MAC) protocol that allows an AP to adaptively switch between full-duplex and half-duplex modes. We formulate a model that determines the probabilities of full-duplex and half-duplex access so as to maximize the expected network throughput. A MAC protocol is further proposed to enable the AP and clients to contend for either full-duplex or half-duplex transmissions based on their assigned probabilities in a distributed way. Our evaluation shows that, by combining the advantages of centralized probabilistic scheduling and distributed random access, our design improves the overall throughput by 2.70x and 1.53x, on average, as compared to half-duplex 802.11 and greedy downlink-uplink client pairing.
Full-duplex (FD) communication is regarded as a key technology in future 5G and Internet of Things (IoT) systems. In addition to high data rate constraints, the success of these systems depends on the ability to allow for confidentiality and security. Secret-key agreement from reciprocal wireless channels can be regarded as a valuable supplement for security at the physical layer. In this work, we study the role of FD communication in conjunction with secret-key agreement. We first introduce two complementary key generation models for FD and half-duplex (HD) settings and compare the performance by introducing the key-reconciliation function. Furthermore, we study the impact of the so called probing-reconciliation trade-off, the role of a strong eavesdropper and analyze the system in the high SNR regime. We show that under certain conditions, the FD mode enforces a deteriorating impact on the capabilities of the eavesdropper and offers several advantages in terms of secret-key rate over the conventional HD setups. Our analysis reveals as an interesting insight that perfect self-interference cancellation is not necessary in order to obtain performance gains over the HD mode.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا