Do you want to publish a course? Click here

High order asymptotic preserving Hermite WENO fast sweeping method for the steady-state $S_{N}$ transport equation

112   0   0.0 ( 0 )
 Added by Yupeng Ren
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose to combine the fifth order Hermite weighted essentially non-oscillatory (HWENO) scheme and fast sweeping method (FSM) for the solution of the steady-state $S_{N}$ transport equation in the finite volume framework. It is well-known that the $S_{N}$ transport equation asymptotically converges to a macroscopic diffusion equation in the limit of optically thick systems with small absorption and sources. Numerical methods which can preserve the asymptotic limit are referred to as asymptotic preserving methods. In the one-dimensional case, we provide the analysis to demonstrate the asymptotic preserving property of the high order finite volume HWENO method, by showing that its cell-edge and cell-average fluxes possess the thick diffusion limit. Numerical results in both one- and two- dimensions are presented to validate its asymptotic preserving property. A hybrid strategy to compute the nonlinear weights in the HWENO reconstruction is introduced to save computational cost. Extensive one- and two-dimensional numerical experiments are performed to verify the accuracy, asymptotic preserving property and positivity of the proposed HWENO FSM.



rate research

Read More

In this paper, we combine the nonlinear HWENO reconstruction in cite{newhwenozq} and the fixed-point iteration with Gauss-Seidel fast sweeping strategy, to solve the static Hamilton-Jacobi equations in a novel HWENO framework recently developed in cite{mehweno1}. The proposed HWENO frameworks enjoys several advantages. First, compared with the traditional HWENO framework, the proposed methods do not need to introduce additional auxiliary equations to update the derivatives of the unknown function $phi$. They are now computed from the current value of $phi$ and the previous spatial derivatives of $phi$. This approach saves the computational storage and CPU time, which greatly improves the computational efficiency of the traditional HWENO scheme. In addition, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller on the same mesh. Second, the fixed-point fast sweeping method is used to update the numerical approximation. It is an explicit method and does not involve the inverse operation of nonlinear Hamiltonian, therefore any Hamilton-Jacobi equations with complex Hamiltonian can be solved easily. It also resolves some known issues, including that the iterative number is very sensitive to the parameter $varepsilon$ used in the nonlinear weights, as observed in previous studies. Finally, in order to further reduce the computational cost, a hybrid strategy is also presented. Extensive numerical experiments are performed on two-dimensional problems, which demonstrate the good performance of the proposed fixed-point fast sweeping HWENO methods.
In this paper, we propose a novel Hermite weighted essentially non-oscillatory (HWENO) fast sweeping method to solve the static Hamilton-Jacobi equations efficiently. During the HWENO reconstruction procedure, the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils. However, one major novelty and difference from the traditional HWENO framework lies in the fact that, we do not need to introduce and solve any additional equations to update the derivatives of the unknown function $phi$. Instead, we use the current $phi$ and the old spatial derivative of $phi$ to update them. The traditional HWENO fast sweeping method is also introduced in this paper for comparison, where additional equations governing the spatial derivatives of $phi$ are introduced. The novel HWENO fast sweeping methods are shown to yield great savings in both computational time and storage, which improves the computational efficiency of the traditional HWENO scheme. In addition, a hybrid strategy is also introduced to further reduce computational costs. Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.
In this paper, high order semi-implicit well-balanced and asymptotic preserving finite difference WENO schemes are proposed for the shallow water equations with a non-flat bottom topography. We consider the Froude number ranging from O(1) to 0, which in the zero Froude limit becomes the lake equations for balanced flow without gravity waves. We apply a well-balanced finite difference WENO reconstruction, coupled with a stiffly accurate implicit-explicit (IMEX) Runge-Kutta time discretization. The resulting semi-implicit scheme can be shown to be well-balanced, asymptotic preserving (AP) and asymptotically accurate (AA) at the same time. Both one- and two-dimensional numerical results are provided to demonstrate the high order accuracy, AP property and good performance of the proposed methods in capturing small perturbations of steady state solutions.
In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial reconstruction, with total variation diminishing Runge-Kutta time discretization. The main idea of the hybrid HWENO scheme is that we first use a shock-detection technique to identify the troubled cell, then, if the cell is identified as a troubled cell, we would modify the first order moment in the troubled cell and employ HWENO reconstruction in spatial discretization; otherwise, we directly use high order linear reconstruction. Unlike other HWENO schemes, we borrow the thought of limiter for discontinuous Galerkin (DG) method to control the spurious oscillations, after this procedure, the scheme would avoid the oscillations by using HWENO reconstruction nearby discontinuities and have higher efficiency for using linear approximation straightforwardly in the smooth regions. In addition, the hybrid HWENO scheme still keeps the compactness. A collection of benchmark numerical tests for one and two dimensional cases are performed to demonstrate the numerical accuracy, high resolution and robustness of the proposed scheme.
126 - Tao Xiong , Wenjun Sun , Yi Shi 2020
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work cite{Peng2020stability}, in which stability enhanced high order AP DG methods are proposed for linear transport equations, we propose to pernalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. In the diffusive limit, a hyperbolic, namely $Delta t=mathcal{O}(h)$ where $Delta t$ and $h$ are the time step and mesh size respectively, instead of parabolic $Delta t=mathcal{O}(h^2)$ time step restriction is obtained, which is also free from the photon mean free path. The main new ingredient is that we further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations from an outer iterative loop. Our scheme is shown to be asymptotic preserving and asymptotically accurate. Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is of high order, effective and efficient.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا