Do you want to publish a course? Click here

A New Perspective on Debiasing Linear Regressions

69   0   0.0 ( 0 )
 Added by Yufei Yi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose an abstract procedure for debiasing constrained or regularized potentially high-dimensional linear models. It is elementary to show that the proposed procedure can produce $frac{1}{sqrt{n}}$-confidence intervals for individual coordinates (or even bounded contrasts) in models with unknown covariance, provided that the covariance has bounded spectrum. While the proof of the statistical guarantees of our procedure is simple, its implementation requires more care due to the complexity of the optimization programs we need to solve. We spend the bulk of this paper giving examples in which the proposed algorithm can be implemented in practice. One fairly general class of instances which are amenable to applications of our procedure include convex constrained least squares. We are able to translate the procedure to an abstract algorithm over this class of models, and we give concrete examples where efficient polynomial time methods for debiasing exist. Those include the constrained version of LASSO, regression under monotone constraints, regression with positive monotone constraints and non-negative least squares. In addition, we show that our abstract procedure can be applied to efficiently debias SLOPE and square-root SLOPE, among other popular regularized procedures under certain assumptions. We provide thorough simulation results in support of our theoretical findings.



rate research

Read More

141 - Z. Bai , D. Jiang , J. Yao 2012
For a multivariate linear model, Wilks likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say $ple 20$. On the other hand, assuming that the data dimension $p$ as well as the number $q$ of regression variables are fixed while the sample size $n$ grows, several asymptotic approximations are proposed in the literature for Wilks $bLa$ including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilks test in a high-dimensional context, specifically assuming a high data dimension $p$ and a large sample size $n$. Based on recent random matrix theory, the correction we propose to Wilks test is asymptotically Gaussian under the null and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large $p$ and large $n$ context, but also for moderately large data dimensions like $p=30$ or $p=50$. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in MANOVA which is valid for high-dimensional data.
The Environment Kuznets Curve (EKC) predicts an inverted U-shaped relationship between economic growth and environmental pollution. Current analyses frequently employ models which restrict the nonlinearities in the data to be explained by the economic growth variable only. We propose a Generalized Cointegrating Polynomial Regression (GCPR) with flexible time trends to proxy time effects such as technological progress and/or environmental awareness. More specifically, a GCPR includes flexible powers of deterministic trends and integer powers of stochastic trends. We estimate the GCPR by nonlinear least squares and derive its asymptotic distribution. Endogeneity of the regressors can introduce nuisance parameters into this limiting distribution but a simulated approach nevertheless enables us to conduct valid inference. Moreover, a subsampling KPSS test can be used to check the stationarity of the errors. A comprehensive simulation study shows good performance of the simulated inference approach and the subsampling KPSS test. We illustrate the GCPR approach on a dataset of 18 industrialised countries containing GDP and CO2 emissions. We conclude that: (1) the evidence for an EKC is significantly reduced when a nonlinear time trend is included, and (2) a linear cointegrating relation between GDP and CO2 around a power law trend also provides an accurate description of the data.
102 - Yinan Lin , Zhenhua Lin 2021
We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed types, such as models with both functional and scalar predictors. In contrast with most existing methods that rest on the large-sample distributions of test statistics, the proposed method leverages the technique of bootstrapping max statistics and exploits the variance decay property that is an inherent feature of functional data, to improve the empirical power of tests especially when the sample size is limited and the signal is relatively weak. Theoretical guarantees on the validity and consistency of the proposed test are provided uniformly for a class of test statistics.
To fast approximate maximum likelihood estimators with massive data, this paper studies the Optimal Subsampling Method under the A-optimality Criterion (OSMAC) for generalized linear models. The consistency and asymptotic normality of the estimator from a general subsampling algorithm are established, and optimal subsampling probabilities under the A- and L-optimality criteria are derived. Furthermore, using Frobenius norm matrix concentration inequalities, finite sample properties of the subsample estimator based on optimal subsampling probabilities are also derived. Since the optimal subsampling probabilities depend on the full data estimate, an adaptive two-step algorithm is developed. Asymptotic normality and optimality of the estimator from this adaptive algorithm are established. The proposed methods are illustrated and evaluated through numerical experiments on simulated and real datasets.
Regression models with crossed random effect errors can be very expensive to compute. The cost of both generalized least squares and Gibbs sampling can easily grow as $N^{3/2}$ (or worse) for $N$ observations. Papaspiliopoulos et al. (2020) present a collapsed Gibbs sampler that costs $O(N)$, but under an extremely stringent sampling model. We propose a backfitting algorithm to compute a generalized least squares estimate and prove that it costs $O(N)$. A critical part of the proof is in ensuring that the number of iterations required is $O(1)$ which follows from keeping a certain matrix norm below $1-delta$ for some $delta>0$. Our conditions are greatly relaxed compared to those for the collapsed Gibbs sampler, though still strict. Empirically, the backfitting algorithm has a norm below $1-delta$ under conditions that are less strict than those in our assumptions. We illustrate the new algorithm on a ratings data set from Stitch Fix.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا