Do you want to publish a course? Click here

Accurate X-ray Timing in the Presence of Systematic Biases With Simulation-Based Inference

77   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Because many of our X-ray telescopes are optimized towards observing faint sources, observations of bright sources like X-ray binaries in outburst are often affected by instrumental biases. These effects include dead time and photon pile-up, which can dramatically change the statistical inference of physical parameters from these observations. While dead time is difficult to take into account in a statistically consistent manner, simulating dead time-affected data is often straightforward. This structure makes the issue of inferring physical properties from dead time-affected observations fall into a class of problems common across many scientific disciplines. There is a growing number of methods to address them under the names of Approximate Bayesian Computation (ABC) or Simulation-Based Inference (SBI), aided by new developments in density estimation and statistical machine learning. In this paper, we introduce SBI as a principled way to infer variability properties from dead time-affected light curves. We use Sequential Neural Posterior Estimation to estimate the posterior probability for variability properties. We show that this method can recover variability parameters on simulated data even when dead time is variable, and present results of an application of this approach to NuSTAR observations of the galactic black hole X-ray binary GRS 1915+105.



rate research

Read More

The timing-based localization, which utilize the triangulation principle with the different arrival time of gamma-ray photons, with a fleet of Cubesats is a unique and powerful solution for the future all-sky gamma-ray observation, which is a key for identification of the electromagnetic counterpart of the gravitational wave sources. The Cubesats Applied for MEasuring and Localising Transients (CAMELOT) mission is now being promoted by the Hungarian and Japanese collaboration with a basic concept of the nine Cubesats constellations in low earth orbit. The simulation framework for estimation of the localization capability has been developed including orbital parameters, an algorithm to estimate the expected observed profile of gamma-ray photons, finding the peak of the cross-correlation function, and a statistical method to find a best-fit position and its uncertainty. It is revealed that a degree-scale localization uncertainty can be achieved by the CAMELOT mission concept for bright short gamma-ray bursts, which could be covered by future large field of view ground-based telescopes. The new approach utilizing machine-learning approach is also investigated to make the procedure automated for the future large scale constellations. The trained neural network with 10$^6$ simulated light curves generated by the artificial short burst templates successfully predicts the time-delay of the real light curve and achieves a comparable performance to the cross-correlation algorithm with full automated procedures.
168 - Matteo Bachetti 2020
The Nuclear Spectroscopic Telescope Array (NuSTAR) mission is the first focusing X-ray telescope in the hard X-ray (3-79 keV) band. Among the phenomena that can be studied in this energy band, some require high time resolution and stability: rotation-powered and accreting millisecond pulsars, fast variability from black holes and neutron stars, X-ray bursts, and more. Moreover, a good alignment of the timestamps of X-ray photons to UTC is key for multi-instrument studies of fast astrophysical processes. In this Paper, we describe the timing calibration of the NuSTAR mission. In particular, we present a method to correct the temperature-dependent frequency response of the on-board temperature-compensated crystal oscillator. Together with measurements of the spacecraft clock offsets obtained during downlinks passes, this allows a precise characterization of the behavior of the oscillator. The calibrated NuSTAR event timestamps for a typical observation are shown to be accurate to a precision of ~65 microsec.
The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncertainties associated with x-ray polarization measurements of these sources. We have initiated a program to perform the detailed calculations that will offer insights into the uncertainties associated with x-ray polarization measurements. Here we describe a mathematical formalism for determining the 1- and 2-parameter errors in the magnitude and position angle of x-ray (linear) polarization in the presence of a (polarized or unpolarized) background. We further review relevant statistics-including clearly distinguishing between the Minimum Detectable Polarization (MDP) and the accuracy of a polarization measurement.
The X-Ray Telescope (XRT) on board Swift was mainly designed to provide detailed position, timing and spectroscopic information on Gamma-Ray Burst (GRB) afterglows. During the mission lifetime the fraction of observing time allocated to other types of source has been steadily increased. In this paper, we report on the results of the in-flight calibration of the timing capabilities of the XRT in Windowed Timing read-out mode. We use observations of the Crab pulsar to evaluate the accuracy of the pulse period determination by comparing the values obtained by the XRT timing analysis with the values derived from radio monitoring. We also check the absolute time reconstruction measuring the phase position of the main peak in the Crab profile and comparing it both with the value reported in literature and with the result that we obtain from a simultaneous Rossi X-Ray Timing Explorer (RXTE) observation. We find that the accuracy in period determination for the Crab pulsar is of the order of a few picoseconds for the observation with the largest data time span. The absolute time reconstruction, measured using the position of the Crab main peak, shows that the main peak anticipates the phase of the position reported in literature for RXTE by ~270 microseconds on average (~150 microseconds when data are reduced with the attitude file corrected with the UVOT data). The analysis of the simultaneous Swift-XRT and RXTE Proportional Counter Array (PCA) observations confirms that the XRT Crab profile leads the PCA profile by ~200 microseconds. The analysis of XRT Photodiode mode data and BAT event data shows a main peak position in good agreement with the RXTE, suggesting the discrepancy observed in XRT data in Windowed Timing mode is likely due to a systematic offset in the time assignment for this XRT read out mode.
In this paper we present the enhanced X-ray Timing and Polarimetry mission - eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources. The paper provides a detailed description of: (1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload; (2) the elements and functions of the mission, from the spacecraft to the ground segment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا