Mechanical Properties of Gradient Copper Nano-Gyroid Cellular Structures: A Molecular Dynamics Study


Abstract in English

Advanced manufacturing (AM) technologies, such as nanoscale additive manufacturing process, enable the fabrication of nanoscale architected materials which has received great attention due to their prominent properties. However, few studies delve into the functional gradient cellular architecture on nanoscale. This work studied the gradient nano-Gyroid architected material made of copper (Cu) by molecular dynamic (MD) simulations. The result reveals that, unlike homogeneous architecture, gradient Gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. Moreover, this deformation behavior and energy absorption are predictable and designable, which demonstrates its highly programmable potential.

Download