Do you want to publish a course? Click here

Distilling and Transferring Knowledge via cGAN-generated Samples for Image Classification and Regression

104   0   0.0 ( 0 )
 Added by Xin Ding
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Knowledge distillation (KD) has been actively studied for image classification tasks in deep learning, aiming to improve the performance of a student model based on the knowledge from a teacher model. However, there have been very few efforts for applying KD in image regression with a scalar response, and there is no KD method applicable to both tasks. Moreover, existing KD methods often require a practitioner to carefully choose or adjust the teacher and student architectures, making these methods less scalable in practice. Furthermore, although KD is usually conducted in scenarios with limited labeled data, very few techniques are developed to alleviate such data insufficiency. To solve the above problems in an all-in-one manner, we propose in this paper a unified KD framework based on conditional generative adversarial networks (cGANs), termed cGAN-KD. Fundamentally different from existing KD methods, cGAN-KD distills and transfers knowledge from a teacher model to a student model via cGAN-generated samples. This unique mechanism makes cGAN-KD suitable for both classification and regression tasks, compatible with other KD methods, and insensitive to the teacher and student architectures. Also, benefiting from the recent advances in cGAN methodology and our specially designed subsampling and filtering procedures, cGAN-KD also performs well when labeled data are scarce. An error bound of a student model trained in the cGAN-KD framework is derived in this work, which theoretically explains why cGAN-KD takes effect and guides the implementation of cGAN-KD in practice. Extensive experiments on CIFAR-10 and Tiny-ImageNet show that we can incorporate state-of-the-art KD methods into the cGAN-KD framework to reach a new state of the art. Also, experiments on RC-49 and UTKFace demonstrate the effectiveness of cGAN-KD in image regression tasks, where existing KD methods are inapplicable.



rate research

Read More

Knowledge distillation transfers knowledge from the teacher network to the student one, with the goal of greatly improving the performance of the student network. Previous methods mostly focus on proposing feature transformation and loss functions between the same levels features to improve the effectiveness. We differently study the factor of connection path cross levels between teacher and student networks, and reveal its great importance. For the first time in knowledge distillation, cross-stage connection paths are proposed. Our new review mechanism is effective and structurally simple. Our finally designed nested and compact framework requires negligible computation overhead, and outperforms other methods on a variety of tasks. We apply our method to classification, object detection, and instance segmentation tasks. All of them witness significant student network performance improvement. Code is available at https://github.com/Jia-Research-Lab/ReviewKD
113 - Zheng Wang 2019
Feature selection, an effective technique for dimensionality reduction, plays an important role in many machine learning systems. Supervised knowledge can significantly improve the performance. However, faced with the rapid growth of newly emerging concepts, existing supervised methods might easily suffer from the scarcity and validity of labeled data for training. In this paper, the authors study the problem of zero-shot feature selection (i.e., building a feature selection model that generalizes well to unseen concepts with limited training data of seen concepts). Specifically, they adopt class-semantic descriptions (i.e., attributes) as supervision for feature selection, so as to utilize the supervised knowledge transferred from the seen concepts. For more reliable discriminative features, they further propose the center-characteristic loss which encourages the selected features to capture the central characteristics of seen concepts. Extensive experiments conducted on various real-world datasets demonstrate the effectiveness of the method.
In this paper, we investigate a new framework for image classification that adaptively generates spatial representations. Our strategy is based on a sequential process that learns to explore the different regions of any image in order to infer its category. In particular, the choice of regions is specific to each image, directed by the actual content of previously selected regions.The capacity of the system to handle incomplete image information as well as its adaptive region selection allow the system to perform well in budgeted classification tasks by exploiting a dynamicly generated representation of each image. We demonstrate the systems abilities in a series of image-based exploration and classification tasks that highlight its learned exploration and inference abilities.
Existing online knowledge distillation approaches either adopt the student with the best performance or construct an ensemble model for better holistic performance. However, the former strategy ignores other students information, while the latter increases the computational complexity. In this paper, we propose a novel method for online knowledge distillation, termed FFSD, which comprises two key components: Feature Fusion and Self-Distillation, towards solving the above problems in a unified framework. Different from previous works, where all students are treated equally, the proposed FFSD splits them into a student leader and a common student set. Then, the feature fusion module converts the concatenation of feature maps from all common students into a fused feature map. The fused representation is used to assist the learning of the student leader. To enable the student leader to absorb more diverse information, we design an enhancement strategy to increase the diversity among students. Besides, a self-distillation module is adopted to convert the feature map of deeper layers into a shallower one. Then, the shallower layers are encouraged to mimic the transformed feature maps of the deeper layers, which helps the students to generalize better. After training, we simply adopt the student leader, which achieves superior performance, over the common students, without increasing the storage or inference cost. Extensive experiments on CIFAR-100 and ImageNet demonstrate the superiority of our FFSD over existing works. The code is available at https://github.com/SJLeo/FFSD.
131 - Fenglin Liu , Xian Wu , Shen Ge 2021
Automatically generating radiology reports can improve current clinical practice in diagnostic radiology. On one hand, it can relieve radiologists from the heavy burden of report writing; On the other hand, it can remind radiologists of abnormalities and avoid the misdiagnosis and missed diagnosis. Yet, this task remains a challenging job for data-driven neural networks, due to the serious visual and textual data biases. To this end, we propose a Posterior-and-Prior Knowledge Exploring-and-Distilling approach (PPKED) to imitate the working patterns of radiologists, who will first examine the abnormal regions and assign the disease topic tags to the abnormal regions, and then rely on the years of prior medical knowledge and prior working experience accumulations to write reports. Thus, the PPKED includes three modules: Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD). In detail, PoKE explores the posterior knowledge, which provides explicit abnormal visual regions to alleviate visual data bias; PrKE explores the prior knowledge from the prior medical knowledge graph (medical knowledge) and prior radiology reports (working experience) to alleviate textual data bias. The explored knowledge is distilled by the MKD to generate the final reports. Evaluated on MIMIC-CXR and IU-Xray datasets, our method is able to outperform previous state-of-the-art models on these two datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا