Nanoscale reversal of stable room temperature ferroelectric polarization in organic croconic acid thin films


Abstract in English

It was discovered in 2010 that Croconic Acid, in its crystal form, has the highest polarization among organic ferroelectrics. In the context of eliminating toxic substances from electronic devices, Croconic Acid has a great potential as a sublimable lead-free ferroelectric. However, studies on ferroelectric properties of its thin films are only in their early stages and its capability to be incorporated in nanoscale devices is unknown. In this work, we demonstrate, upon ferroelectric switching at the nanoscale, stable and enduring room temperature polarization with no leakage current in Croconic Acid thin films. We thus show that it is a promising lead-free organic ferroelectric toward integration in nanoscale devices. The challenging switching current and polarization reversal characterization at the nanoscale was done using a unique combination of piezoresponse force microscopy, polarization switching current spectroscopy and the concurrent electromechanical strain response. Indeed, this combination can help to rationalize otherwise asymmetric polarization-voltage data and distorted hysteresis due to current jumps below the background noise, which are statistically washed away in macrojunctions but become prevalent at the nanoscale. These results are valid irrespective of the ferroelectrics nature, organic or inorganic. Beyond the potential of Croconic Acid as an ecological ferroelectric material in devices, our detection of a clear nanoscopic polarization switching current thus paves the way for a fundamental understanding and technological applications of the polarization reversal mechanism at the nanoscale.

Download