Do you want to publish a course? Click here

Optimizing Memory Efficiency of Graph Neural Networks on Edge Computing Platforms

106   0   0.0 ( 0 )
 Added by Jianlei Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph neural networks (GNN) have achieved state-of-the-art performance on various industrial tasks. However, the poor efficiency of GNN inference and frequent Out-Of-Memory (OOM) problem limit the successful application of GNN on edge computing platforms. To tackle these problems, a feature decomposition approach is proposed for memory efficiency optimization of GNN inference. The proposed approach could achieve outstanding optimization on various GNN models, covering a wide range of datasets, which speeds up the inference by up to 3x. Furthermore, the proposed feature decomposition could significantly reduce the peak memory usage (up to 5x in memory efficiency improvement) and mitigate OOM problems during GNN inference.



rate research

Read More

Graph feature extraction is a fundamental task in graphs analytics. Using feature vectors (graph descriptors) in tandem with data mining algorithms that operate on Euclidean data, one can solve problems such as classification, clustering, and anomaly detection on graph-structured data. This idea has proved fruitful in the past, with spectral-based graph descriptors providing state-of-the-art classification accuracy on benchmark datasets. However, these algorithms do not scale to large graphs since: 1) they require storing the entire graph in memory, and 2) the end-user has no control over the algorithms runtime. In this paper, we present single-pass streaming algorithms to approximate structural features of graphs (counts of subgraphs of order $k geq 4$). Operating on edge streams allows us to avoid keeping the entire graph in memory, and controlling the sample size enables us to control the time taken by the algorithm. We demonstrate the efficacy of our descriptors by analyzing the approximation error, classification accuracy, and scalability to massive graphs. Our experiments showcase the effect of the sample size on approximation error and predictive accuracy. The proposed descriptors are applicable on graphs with millions of edges within minutes and outperform the state-of-the-art descriptors in classification accuracy.
Graph neural networks have been successful in many learning problems and real-world applications. A recent line of research explores the power of graph neural networks to solve combinatorial and graph algorithmic problems such as subgraph isomorphism, detecting cliques, and the traveling salesman problem. However, many NP-complete problems are as of yet unexplored using this method. In this paper, we tackle the Steiner Tree Problem. We employ four learning frameworks to compute low cost Steiner trees: feed-forward neural networks, graph neural networks, graph convolutional networks, and a graph attention model. We use these frameworks in two fundamentally different ways: 1) to train the models to learn the actual Steiner tree nodes, 2) to train the model to learn good Steiner point candidates to be connected to the constructed tree using a shortest path in a greedy fashion. We illustrate the robustness of our heuristics on several random graph generation models as well as the SteinLib data library. Our finding suggests that the out-of-the-box application of GNN methods does worse than the classic 2-approximation method. However, when combined with a greedy shortest path construction, it even does slightly better than the 2-approximation algorithm. This result sheds light on the fundamental capabilities and limitations of graph learning techniques on classical NP-complete problems.
Optimization for deep networks is currently a very active area of research. As neural networks become deeper, the ability in manually optimizing the network becomes harder. Mini-batch normalization, identification of effective respective fields, momentum updates, introduction of residual blocks, learning rate adoption, etc. have been proposed to speed up the rate of convergent in manual training process while keeping the higher accuracy level. However, the problem of finding optimal topological structure for a given problem is becoming a challenging task need to be addressed immediately. Few researchers have attempted to optimize the network structure using evolutionary computing approaches. Among them, few have successfully evolved networks with reinforcement learning and long-short-term memory. A very few has applied evolutionary programming into deep convolution neural networks. These attempts are mainly evolved the network structure and then subsequently optimized the hyper-parameters of the network. However, a mechanism to evolve the deep network structure under the techniques currently being practiced in manual process is still absent. Incorporation of such techniques into chromosomes level of evolutionary computing, certainly can take us to better topological deep structures. The paper concludes by identifying the gap between evolutionary based deep neural networks and deep neural networks. Further, it proposes some insights for optimizing deep neural networks using evolutionary computing techniques.
As recurrent neural networks become larger and deeper, training times for single networks are rising into weeks or even months. As such there is a significant incentive to improve the performance and scalability of these networks. While GPUs have become the hardware of choice for training and deploying recurrent models, the implementations employed often make use of only basic optimizations for these architectures. In this article we demonstrate that by exposing parallelism between operations within the network, an order of magnitude speedup across a range of network sizes can be achieved over a naive implementation. We describe three stages of optimization that have been incorporated into the fifth release of NVIDIAs cuDNN: firstly optimizing a single cell, secondly a single layer, and thirdly the entire network.
For deep neural network accelerators, memory movement is both energetically expensive and can bound computation. Therefore, optimal mapping of tensors to memory hierarchies is critical to performance. The growing complexity of neural networks calls for automated memory mapping instead of manual heuristic approaches; yet the search space of neural network computational graphs have previously been prohibitively large. We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces, that combines graph neural networks, reinforcement learning, and evolutionary search. A set of fast, stateless policies guide the evolutionary search to improve its sample-efficiency. We train and validate our approach directly on the Intel NNP-I chip for inference. EGRL outperforms policy-gradient, evolutionary search and dynamic programming baselines on BERT, ResNet-101 and ResNet-50. We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا